
Stellingen

Behorende bij het proefschrift "Searching Time-table Networks" van Eduard Tulp

(1) Een discreet dynamisch netwerk is door zijn fundamentele eigenschappen een
doelmatige representatie van een dienstregelingsnetwerk.

(2) Het DYNET algorithme is een correcte en efficiente manier om een discreet
dynamisch netwerk te doorzoeken.

(3) SRM is, met name in combinatie met DYNET*, een goede techniek om de
efficientie van het doorzoeken van een dienstregelingsnetwerk te verhogen.

(4) Een reizigersinformatiesysteem voor dienstregelingsgestuurd vervoer moet
actief gedrag vertonen.

(5) Door een gebrek aan goede informatie wordt het openbaar vervoer slecht benut.
Het gebruik van goede reizigersinformatiesystemen zal leiden tot eenbewustere
keuze van vervoermiddel, en een verhoogd gebruik van het openbaar vervoer.

(6) Het gebruik van een reizigersinformatiesysteem als stuurmiddel mag niet leiden
tot een vermindering van de kwaliteit van de informatie.

(7) De basis van dynamische reizigersinformatie is niet de actuele situatie, maar een
voorspelling van de situatie voor de komende uren.

(8) Indien bij een automatiseringsproject "de gebruiker centraal wordt gesteld", dan
mag dit niet betekenen dat de specificatie van het project aan de gebruiker
wordt overgelaten.

(9) Hoe gebruikersvriendelijker een programma is, des te slechter wordt de
handleiding gelezen.

(10) Om de Nederlandse taal te moderniseren, verdient het aanbeveling om de
uitdrukking "Loopt als een trein" ter vervangen door "Loopt als een Hoge
Snelheids Trein (HST)".

(11) De werken van Bach worden, ondanks waarschuwingen van Mozart, in een te
hoog tempo uitgevoerd. Waarschijnlijk is dit te wijten aan het feit dat veel
musici het alla breve negeren, en de mogelijkheden van klassieke instrumenten
overschatten.

(12) In de hedendaagse muziek worden musici te veel beoordeeld op de beheersing
van de techniek, en te weinig op het vermogen om de emotie van de muziek
over te brengen.

(13) Net zoals bij kunstmatige inseminatie, is bij kunstmatige intelligentie de
natuurlijke variant veel opwindender.

VRIJE UNIVERSITEIT

Searching Time-table Networks

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan
de Vrije Universiteit te Amsterdam,
op gezag van de rector magnificus

dr. C. Datema,
hoogleraar aan de faculteit der letteren,

in het openbaar te verdedigen
ten overstaan van de promotiecommissie

van de faculteit der economische wetenschappen en econometrie
op donderdag 31 oktober 1991 te 15.30 uur

in het hoofdgebouw van de universiteit, De Boelelaan 1105

door

Eduard Tulp

geboren te Voorburg

Drukkerij Elinkwijk BV, Utrecht
1991

Promotoren : prof. dr. A.A.I. Holtgrefe
prof. dr. L. Siklóssy

Referenten : prof. dr. ir. R. Hamerslag
dr. M.H. Slagmolen

Searching Time-table Networks

Contents

Contents

Preface

V

xi

1. Introduction 1

2. Discrete Networks 7
2.1. A quick introduction to graph theory 7
2.1.1. A weighted non-directed graph 7
2.1.2. A weighted directed graph 8
2.2. Representing a railway network by a graph 8
2.3. Representing a railway service network by a graph 9
2.4. Representing waiting time 10
2.5. A discrete network 11

3. Searching A Graph 15

3.1. Shortest path algorithms 15
3.1.1. Matrix algorithms: Floyd's algorithm 15
3.1.2. Tree building algorithms 16
3.1.2.1. Label correcting algorithms: Moore's algorithm 17
3.1.2.2. Label setting algorithms: Dijkstra's algorithm 18
3.1.2.3. An improvement of Dijkstra's algorithm 19
3.2. Remembering the route of the shortest path 20
3.3. The dynamic programming principle 21
3.4. Searching bidirectionally 21
3.5. Conclusion 22

This book was printed by Drukkerij
Elinkwijk BV, Utrecht, September
1991. Reproduced from camera-ready
copy, which was typeset using Ventura
Publisher Professional. Layout and all
illustrations by the author. The maps
were digitized by Ch. Keuken. Cover
by NS-Design.

Copyright © 1991 by Eduard Tulp

All rights reserved. No part of this
book may be reproduced in any form
or by any means without permission in
writing from the author.

4. Searching Discrete Networks 23 8. 	Space Reduction Method 61
4.1. Adapting Dijkstra's algorithm to discrete networks 23 8.1. 	Domains of application 61
4.2. The principle of optimality for discrete networks 24 8.2. 	The algorithm for SRM 64
4.3. An example 25 83. 	The different steps in SRM 64
4.4. Relevant edges 25 83.1. 	The Idealized Skeleton Graph ISG 65
4.5. Suboptimality of solution 27 8.3.2. 	The Idealized Solution 65
4.6. An optimal path in a discrete network 27 833. 	Loosening the solution in ISG 66
4.7. Traversing the suboptimal solution 27 83.4. 	The Reduced Graph G' 67
4.8. Finding the optimal solution: the second pass 28 83.5. 	The search in the Reduced Graph G': first pass 68
4.9. Using the results from the first search 29 83.6. 	Verification of Optimality 68
4.9.1. A two-pass algorithm: DISNET 32 83.7. 	Repair: second pass 70

8.4. 	The choice of the coefficient p 70

5. Discrete Dynamic Networks 35
8.5. 	Application 71

5.1. Visiting costs 35
5.2. Platform dependency 35 9. 	Heuristic Search 73
5.3. Train dependency 36 9.1. 	The A* search algorithm 73
5.4. A discrete dynamic network 37 9.2. 	Admissibility of A* 74
5.5. Space requirements of the CON function 39 93. 	Consistent heuristics 74

9.4. 	A* as a modified Dijkstra algorithm 76

6. Searching Discrete Dynamic Networks 41

	

9.5. 	Using the results from SRM in A*

	

9.6. 	Using heuristics in DYNET: DYNET*
76
77

6.1. Adapting the search algorithm to discrete dynamic networks 41
6.2. A counter example: the effect of CON 43
6.3. The invalidity of the Markovian property 44 10. 	Offset Vertices 81
6.4. The principle of optimality for discrete dynamic networks 45 10.1. 	Offset vertices 81
6.5. Relevant edges in discrete dynamic networks 46 10.2. 	Offset vertices in undirected graphs 82
6.6. A search algorithm for discrete dynamic networks: DYNET 47 103. 	Offset vertices in directed graphs 83
6.6.1. The correctness of the forward pass 49 103.1. 	Transforming a graph 83
6.6.2. The correctness of the backward pass 50 103.2. 	The algorithm to transform a directed, weighted graph 86
6.7. Dynamic generation of vertices 51 1033. 	Adapting Dijkstra's algorithm to offset vertices 87

1033.1. An offset vertex as the starting vertex 87

7. General Dynamic Networks 53
1033.2. An offset vertex as the terminating vertex
10.333. An offset vertex as starting vertex and terminating vertex

88
88

7.1. An example application 53 103.4. 	The Dijkstra algorithm for searching a graph with offset vertices 89
7.2. Dynamic networks 54 10.4. 	Offset vertices in discrete dynamic networks 91
73. Searching a dynamic network 54 10.4.1. 	Transforming a discrete dynamic network 92
7.3.1. The principle of optimality for dynamic networks 55 10.4.2. 	The algorithm to transform a discrete dynamic network 95
7.3.2. The correctness of the algorithm 57 10.43. 	Searching a discrete dynamic network with offset vertices 97
733. Dynamic generation of vertices 59

vi 	 vii

98 12.3. 	Implementation of TRAINS 133
98
99
100 13. 	TRAINS, An Active System 135

100 13.1. 	The theory of active systems: discontinuities 135

101 13.2. 	The necessity of active behaviour 136

102 133. 	The dimensions of a topic 136
13.4. 	Active behaviour 136
13.4.1. 	Subject focusing 137

107 13.4.2. 	The initial answer 137
107 13.43. 	Searching for alternate solutions 137
108 13.5. 	Discontinuity conflicts 137
108 13.6. 	User models 138
109 13.7. 	The application of TRAINS 138
109 13.8. 	The user model in TRAINS 138
110 13.9. 	Relevant solutions 139
110 13.10. 	An example 140
111
112
112 14. 	TRAINS, Results 143

113 14.1. 	The program 143

115 14.1.1. 	The techniques used 143

116 14.2. 	The network 144

117 143. 	The example questions 144

117 143.1. 	Heemskerk to Amsterdam CS 144

119 14.3.2. 	Hoorn to Den Haag HS 145
143.3. 	Den Haag CS to Blerick 146
143.4. 	Vlissingen to Zwolle 147

123 14.4. 	Performance 149
123 14.4.1. 	Computational effects 149
123 14.4.1.1. DYNET* versus SRM 151
124 14.4.1.2. Limiting the backward search 151
125 14.4.2. 	Time requirements 151
126
127
128 15. 	TRAINS, A Product 175

128 15.1. 	Travel information and TRAINS 175

130 15.2. 	TRAINS as a tool at enquiry offices 176

131 15.2.1. 	Introducing TRAINS at enquiry offices 177

132 15.2.2. 	The effects of professional use of TRAINS 179

ix

10.4.3.1. An offset vertex as the starting vertex; the forward pass
10.4.3.2. An offset vertex as the terminating vertex; the forward pass
10.43.3. Offset vertices as starting and terminating vertex; the forward pass
10.4.3.4. An offset vertex as the starting vertex; the backward pass
10.4.3.5. An offset vertex as the terminating vertex; the backward pass
10.43.6. Offset vertices as starting and terminating vertex; the backward pass
10.4.4. DYNET for searching a discrete dynamic network with offset vertices

11. Train Changes

	

11.1. 	A train in a discrete dynamic network

	

11.2. 	A train change in a discrete dynamic network

	

113. 	Solutions with unnecessary train changes

	

11.4. 	Eliminating unnecessary train changes
11.4.1. Eliminating a train change
11.4.2. Preserving optimality of solution
11.4.3. Preserving legality of solution
11.4.4. The algorithm to eliminate unnecessary train changes

	

11.5. 	Suboptimal solutions with fewer train changes
11.5.1. Competing solutions
11.5.2. Using a change value
11.5.3. Using macro operators
11.53.1. Which paths to remember
11.5.3.2. Which paths to develop
11.5.3.3. The DYNET algorithm, using macro operators
11.53.4. Other cases

12. Implementation

	

12.1. 	Representing a network
12.1.1. Matrix representation
12.1.2. Ladder representation
12.1.3. Forward star representation
12.1.4. Sorted forward star

	

12.2. 	Implementing the frontier
12.2.1. Sorted list
12.2.2. Binary heap
12.23. Address calculation
12.2.4. Circular address calculation
12.2.5. Address calculation with buckets

viii

15.2.2.1. Speed 179
15.2.2.2. Quality 180
15.2.2.3. Consistency 180
15.2.2.4. Regulations 180
15.2.2.5. Awareness 181
15.3. 	TRAINS as a commercial product 181
15.3.1. 	Releasing TRAINS 181
15.3.1.1. The product 182
15.3.1.2. Price 183
15.3.1.3. Packaging 183
15.3.1.4. Promotion and distribution 183
15.3.1.5. Personnel 184
15.3.2. 	Sales and effects 184
15.3.3. 	Alternate use 185
15.4. 	The future 185

16. 	Further Developments 187
16.1. 	Representing other forms of public transportation 187
16.2. 	Discontinuities in public transportation services 187
16.2.1. 	The human solution: maps 188
16.2.2. 	The computer solution: digital maps 188
16.2.2.1. Estimating walking distances 189
16.2.2.2. Choosing the stops 189
16.2.2.3. Special objects 189
16.2.2.4. Obstacles 190
16.2.2.5. The advantage of using geographical information 190
16.3. 	Combining time-tables and geographical information 190
16.4. 	Using TRAINS in the time-table planning process 190

References 191

Summary 197

Samenvatting 201

Preface

No thesis is ever the work of one single person. Some people contribute to the
research represented by the thesis, some people contribute to the writing of the
thesis, some people make sure that an environment for research exists, some people
support and sometimes help by just being there. This thesis, of course, is no
exception. Perhaps even more so since the research described in this thesis has
largely been a private endeavour. This research has not been officially supported,
nor has it been part of a university research program. However, two organizations,
and numerous people have helped in ways large and small. This preface
acknowledges them.

First of all, I would very much like to thank Laurent Siklóssy. I am greatly
indebted to him Without his encouragement, faith, advice and help there would be
no thesis. It has been a privilege to work with him. Apart from his expert knowledge
of artificial intelligence and research, I have benefited from his advice on writing,
publishing, presenting, travel, business, and jurisdiction. I shall carry his advice and
his stories with me for the rest of my life. It fills me with me great pleasure and pride
that he is my promotor.

Close second, I would like to thank Guus Holtgrefe. Affiliated both with the
Free University of Amsterdam, and the Dutch railways NS, he has played a crucial
role in making it possible to put my work to practice. He introduced me to NS and
its subsidiary company Centrum Voor Informatieverwerking (CVI), and was most
helpful in transferring my system TRAINS to these companies. He made sure that I
got a suitable job at CVI and allowed me to work things out my way, and try out my
ideas in practice. There is no doubt in my mind that without his efforts, and
sometimes even protection, there would not have been an NS Reisplanner. I hope
that my efforts in making the NS Reisplanner a success have been rewarding. In his
quality of professor at the economics faculty of the Free University of Amsterdam,
he provided me with a friendly faculty when I needed one. As apromotor he proved
to be an invaluable addition to Laurent Siklóssy and took care of many

x 	 xi

administrative and practical matters. I would also like to take the opportunity to
thank Mrs. Holtgrefe. I must have spoilt numerous evenings and weekends for her.

I would like to thank Ruud Hamerslag and Martin Slagmolen for their
enthusiastic reception of my work, their useful remarks and encouragement.

Throughout the past years, my brother Wim has always been a great help and
support as a brother, friend and colleague. His work converting and preparing
time-table data, and programming silly things like user interfaces, has always been
greatly underestimated. He has always accepted a less prominent role in the
background without envy. Still, he co-authored the TRAINS system. I am proud that
his name is also on NS Reisplanner. Together, we have become the infamous Tulp
brothers.

At NS, Gijs Klomp has been a true supporter from the start. In his own bold and
inimitable way he made it possible to introduce the TRAINS system at NS
information centers and subsequently release it for public use. I am looking forward
to continue working with him putting a system for the complete Dutch public
transportation network to use. I would like to thank Gert van 't Wout for his faith and
honesty in discussions. I would like to thank Peter Groenen for sharing his years of
experience and time-table expertise, for his cooperation from the very beginning at
NS, and for being an honest supporter. Thanks to Ineke Renkema who turned the
TRAINS system into the beautifully presented product NS Reisplanner. I would also
like to thank Marc Blasband, Jan Datema, and Harry van Straalen for their
contributions preparing the release of the NS Reisplanner. The ladies and
occasional gentlemen at the NS information centers in Hengelo, The Hague and
Utrecht have been the best users I could have hoped for. Specifically, I would like to
thank Mr. G. Kolkhuis Tanke, Mr. G. Nijmeijer, Ms. P. Romijn, Ms. K. van Son, Ms.
L. Visser, Ms. J. Weggemans, and of course, Ms. M. van Es.

Many people at CVI have been very supportive and encouraging. First of all, the
marketing communications group at CVI adopted my thesis and generously
supported its preparation and printing. My friend and colleague Marcel van
Heerwaarden has been a very good and minute proof reader, and made many useful
suggestions. Michiel Verhoef has been great company on conference trips. Ben
Gruben made sure that I need not worry about administrative fuss. CVI
management consisting of Ben Gruben, Theo van Grunsven, Louis Roes and Martin
Slagmolen made sure that I could do my work the way I think is best, and enabled me
to go to important conferences to present my work and update my knowledge. Joop
Braber did a good job making the TRAINS system a successful CVI promotional
gift: the first NS Reisplanner. Many thanks to Jos Tevel who expertly guided me

through the last phase of getting a doctorate and preparing the thesis for printing,
and took care of many practical matters.

Last, but in no way least, I would like to thank my brothers, sisters and parents
for their support and interest. The support of my family has been important, and the
encouragement of my parents has been the most important reason for me to go
through with the doctor's degree.

1. Introduction

Searching is one of the fundamental areas of research both in Operations
Research and in Artificial Intelligence. However ingenious a representation for a
problem may be, usually some and sometimes a great deal of search is still required
to find solutions to the problem. Early in the history of AI (see for example [Ni,
1971]), search problems constituted a major part of the interests of AI researchers.
More recently, search has lost some of its favour, probably for two reasons. First, fast
and sometimes optimal algorithms have been developed for many areas. When no
such algorithms were found, it was either because the area had not been considered,
or because no such algorithms were or could be found (for example, the optimal
algorithms were slow). Second, some general search techniques, as implemented for
example in expert systems shells, have been viewed as adequate.

In Operations Research, in the sixties and early seventies much attention was
paid to the efficiency and memory requirements of search algorithms (see, for
instance, [Po, 1960], [Gi, 1973], [Pa, 1974]). Due to the increase in computational
power (in terms of speed and memory size) in the following years, the importance of
these topics diminished. However, since the advent of relatively small and slow
micro computers, again most work in the area of search algorithms concentrates on
optimizing implementations of existing algorithms (see, for instance [Di, 1979], [De,
1979], [G1, 1984], [Pa, 1984], [Vu, 1988]).

We became interested in searching railway service networks, i.e. typically
finding optimal train connections from railway station s to station t, leaving at or

after some start time Tstart. An optimal solution makes us arrive at our destination as

early as possible (departing after or at our planned earliest departure time Tstart),

and given this earliest arrival time, will allow us to leave as late as possible. Practice
shows that people often have great difficulty planning a journey from one station to
another using conventional railway guides. When the distance between the two
stations is long and the journey consists of several stages, planning a journey requires
searching multiple time-tables in parallel. Once a route is found, usually little

xiv 	 1

attempt is made to improve the found solution or to find a better one at a different
time.

Previous attempts at searching for a quickest route in a public transportation
network were made for planning purposes (see for instance [Cl, 1972], [Ga, 1984]).
Never before had a system been designed to give specific information about
travelling possibilities in an existing transportation network. When a system is used
for capacity planning, or in passenger flow models, an approximation of the (mean)
travel time is sufficient. However, when the goal is to give specific travel
information, a much higher level of detail is necessary. When searching for exact
travelling possibilities, the exact times of departure and arrival must be used and the
correct connectional margin must be observed (a connectional margin is the time
needed to change trains). This high level of detail requires much computer storage
and power, and may have discouraged previous attempts. In addition, in the past,
computers with sufficient capacity may have been too expensive for these customer
service applications. The present availability of relatively cheap micro computers
with sufficient capacity, and the increase in importance of customer oriented
applications, have made the development of a travel information system possible.

We have found that using a conventional graph representation of a railway
service network is not satisfactory. To represent such a network adequately we have
developed the concepts of a discrete network and of a discrete dynamic network. In
a discrete network there are only finite, discrete, predetermined possibilities for
moving from one vertex to another. Rather than representing the discrete nature of
the connections by a function giving the (varying) travel time and wait time of a
connection (see [Co, 1966]), the connections themselves are made discrete. In a
discrete dynamic network, in addition, visiting a vertex has a cost (possibly zero),
which may depend both on the past and future route of the path through the vertex.
Furthermore we introduce dynamic networks, which lack the discreteness of
connections, but in which visiting a vertex has a cost.

We describe search algorithms for finding optimal paths in discrete, discrete
dynamic and dynamic networks. We show that in a discrete and in a discrete dynamic
network, due to the discrete nature of the connections, the definition of an optimal
path must be adapted. In order to find such an optimal path, with Dijkstra's
algorithm ([Di, 1959]) in mind, we have developed a two-pass algorithm. Due to the
varying visiting costs in a discrete dynamic and in a dynamic network, the Markov
independence (see, for instance [Hi, 1986] or [Wi, 1984]) of optimal solutions is no
longer true. Therefore none of the traditional shortest path algorithms could be used
(for an overview of these algorithms see for instance [De, 1984], [Dr, 1969], [Go,

2

1976], [Po, 1960], [VI, 1978]). We have adapted the two-pass algorithm for searching
a discrete network to handle discrete dynamic networks.

The algorithm for searching discrete dynamic networks has been implemented
in a working system (TRAINS) which searches the entire Dutch railway service
network. TRAINS is in current use at the Dutch railway company NS (Nederlandse
Spoorwegen) and was recently introduced to the general public. Various AI
techniques (symmetries, abstraction spaces, distance estimates, etc.) are used to
improve the performance of TRAINS.

Although the optimal or quickest solution is thoroughly defined, it is far less
clear what is the best answer to a user's question. In practice, it turns out that users
usually overspecify their question and that this question is seldomly definite. There
are many factors which determine the 'best' answer, and most users cannot even
make all of these factors explicit. In the domain of travel by train, it is known that the
number of train changes is important, but there may be additional factors
contributing to the best answer. Furthermore, these factors may differ from case to
case. Therefore, it is not possible to define the best answer in terms of goals and
constraints. In order to find the best answer we cannot just have chosen to use such
techniques as multiple-objective shortest path techniques (see for instance [Wh,
1982], [Wa, 1987]), or techniques to find suboptimal paths for each objective (see for
instance [Ka, 1982], [Pe, 1986], [Sh, 1976], [Sh, 1979], [Ye, 1971]). Instead, we search
for a number of optimal solutions, and suboptimal solutions with fewer train
changes, and use a general "common sense" user model to select all relevant
solutions for a user. The user decides which solution is best for her.

We now give a short overview of the thesis.

In chapter 2, after a quick introduction to graph theory, we show why a
conventional graph is not well suited to represent a network of railway services. We
introduce a discrete network which can represent a railway service network
adequately by its discrete connections.

In order to find a basis for a search algorithm for discrete networks, in chapter
3 we review graph search techniques.

With Dijkstra's graph search algorithm as a basis, in chapter 4 we present a
search algorithm for discrete networks.

In chapter 5 we introduce visiting costs to discrete networks. The result is a
discrete dynamic network in which the visiting cost for a specific vertex, incurred by
the incoming and outgoing edge, is given by a connection function.

3

Using the algorithm for searching a discrete network as a basis, we present an
algorithm for searching a discrete dynamic network in chapter 6.

Visiting costs are not restricted to discrete networks. They may also occur in
ordinary (weighted) graphs. In order to represent visiting costs in a weighted graph
adequately, in chapter 7 we propose a dynamic network. We also give a search
algorithm for dynamic networks.

In order to increase search efficiency we have developed the Space Reduction
Method, which is presented in chapter 8. In SRM first solutions in a simpler search
space, called the abstraction space, are considered in order to cut parts of the entire
search space. We show how SRM can be applied to searching a discrete dynamic
network.

In chapter 9 we describe how heuristics can be used to further improve the
efficiency of search algorithms. We describe how the results from SRM can be used
in an A* type of extension to the algorithm for searching discrete dynamic networks.

An excellent way to decrease the amount of search necessary to find a solution,
is to make sure that the network that is being searched is a small as possible. In
chapter 10 we describe how some vertices can be removed from the network when
they are neither the source, nor the goal vertex. We show how the algorithm for
searching discrete dynamic networks can be adapted to deal with these 'hidden'
vertices.

In any practical situation, people often want not only the quickest route, but also
routes with as few train changes as possible. In chapter 11 we describe how the
quickest route can be optimized for train changes, and how some (suboptimal)
longer routes with fewer train changes can be found.

In chapter 12 we look at some implementation issues, such as storage
techniques and efficient implementation of the search algorithms.

Most techniques described in this thesis have been implemented in the
TRAINS system, which is introduced in chapter 13. TRAINS is being used at NS
information centers and was recently released to the general public as an electronic
alternative to the conventional (paper) time-tables. TRAINS exhibits active
behaviour. We describe how answering a user's request, the system will not only
present the optimal solution, but also other solutions which may be of interest to the
user.

In chapter 14 we give some figures about TRAINS, the networks it searches, its
performance, and some examples of questions and the solutions TRAINS finds.

4

In chapter 15 we describe how TRAINS was introduced to its users, how it was
adapted to their wishes, and how it was adapted for public use and finally released.
We also describe some of the effects the TRAINS system and its release have had on
the NS organization and how it may very well become the basis for future NS
time-table information systems.

Recently, the TRAINS system was extended and other forms of public
transportation were added. In order to ensure high quality information we had to
adapt the representation of transportation services and extend the active

component. In chapter 16 we describe these further developments.

5

2. Discrete Networks

2.1. A quick introduction to graph theory

First we shall give a quick introduction to graph theory. We shall restrict
ourselves to those topics which are necessary for a good understanding of the
theoretical issues to be discussed. For a more lengthy and thorough introduction to
graph theory and graph algorithms, we would like to refer to [Ev, 1979].

2.1.1. A weighted non-directed graph

A graph G = (V, E) is a structure which consists of a set of vertices V =
{v0, v1,... } and a set of edges E = {e0, 	each edge e is incident to the elements

of an unordered pair of vertices {u, v} which are not necessarily distinct. These two
vertices u and v are called the endpoints of the edge e. If the endpoints of an edge are
not distinct, then the edge is called a self loop. Edges which have the same pair of

endpoints are called parallel. In a finite graph both V and E are finite. In a
non-directed graph the endpoints of an edge are unordered. Apath is a sequence of

edges e0, el,..., en such that:

(1) ei and e1+1 have a common endpoint, 0 i <n;

(2) If ei is not a self loop, then it shares one of its endpoints with ei-i and the other

with ei+1 if it is not the first edge e0 or the last edge en.

In a weighted graph each edge e is assigned a length 1(e). The length 1(P) of a

path P = e0, el,..., en is defined as:

1(P) = E 1(e i)
i=0

A path is called simple if no vertex appears on it more than once. A graph
(V, E) is called connected if for every two vertices u and v, with u, v E V, there exists

a path whose start vertex is u and whose end vertex is v. A circuit is a path whose start

6
	

7

Fig. 2.4.

Utg

19

Hlm 15

29

Ledn Ledn

Fig. 2.3.

and end vertices are the same. A connected graph which has no circuits is called a
tree.

For an example of a weighted graph let us consider fig. 2.1, consisting of the set
of vertices {A, B, C, D, E, F } and the set of edges {e0, 	e8 }. Edges e4 and es are
parallel. Edge e8 is a self loop. The length of the simple path e0, e3, e7 is 2 + 9 + 6 =
17. The path e0, el, e2, e7, e6, e4 is a (simple) circuit. The graph in fig. 2.2 is a tree.

B 	e1

8

Fig. 2.1. A weighted non-directed graph
	

Fig. 2.2. A tree

2.1.2. A weighted directed graph

In a directed graph the endpoints of an edge are specifically ordered. The first
endpoint of the edge is called the start vertex and the second the end vertex. The edge
is said to be directed from its start vertex to its end vertex. Edges with the same start
vertex and the same end vertex are called parallel, and if u =/= v and e1 : u v and
e2 v u then e1 and e2 are antiparallel.

A directed path is a sequence of edges e0,..., e0 such that the end vertex of ei
is the start vertex of ei+1, 0 i <n. The length of a directed path and a simple
directed path are defined similarly as in the undirected case. A directed graph
(V, E) is called strongly connected if for every two vertices u and v, with u and
v E V , there exists a directed path from u to v; a directed path whose start vertex is
u and whose end vertex is v. A weighted, directed, strongly connected graph is called
a network.

2.2. Representing a railway network by a graph

A (physical) railway network can be represented by a weighted, non-directed,
finite graph. The railway stations are represented by the vertices of the graph, the set
V, and the connecting railroads by the edges, the set E. An edge e connects the
vertices u and v, if and only if there exists a railroad connecting the stations

8

represented by these vertices. The length of an edge e, l(e), is defined as the distance
(in km, say) separating the stations connected by e. The length of a path in our
railway network is the total distance covered by that path. For illustratory purposes,
we consider a graph representing a small part of the Dutch railway network
(simplified and modified); see fig. 2.3.

The vertices of the graph represent the stations (we use the official NS names
and abbreviations): Amsterdam Central Station (Asd), Amsterdam Sloterdijk
(Ass), Haarlem (Hlm), Leiden (Ledn), Schiphol (Shl), Uitgeest (Utg) and Zaandam
(Zd). The edges represent the rail sections Utg - Hlm, Utg - Zd, Hlm - Ledn, Hlm -
Ass, Zd - Ass, Ass - Asd, Ass - Shl and Shl - Ledn. The lengths of the edges are the
lengths of these sections as published in the NS distance tables for tariff calculation.
If we consider the path Utg - Hlm - Ass - Shl - Ledn, then the length of this path is 78
km.

2.3. Representing a railway service network by a graph

A network of railway services can be represented by a weighted directed graph.
Again the stations are represented by the vertices of the graph. An edge e directed
from the start vertex u to the end vertex v represents a train running from the station
represented by u (say A) to the one represented by v (say B). The length of an edge
is the time this train takes to travel from A to B. Let us consider an example with

1 	Sony about Amsterdam Sloterdijk.

9

Ass
Shl

Ledn

120
7:40
7:55

140
7:55
8:05

150

8:15
8:30

Ledn

Fig. 2.5.

three stations (Ass, Shl and Ledn) and three trains: two from Ass to Shl (represented
by the edges e120 and e140) and one from Shl to Ledn (represented by the edge e150).

Station
Amsterdam Sloterdijk
Schiphol
Leiden

The graph representing this network is shown in fig. 2.4. We consider the path
Ass - Shl - Ledn with edges e140 and elm, representing a trip from Amsterdam
Sloterdijk to Leiden by trains 140 and 150, changing at Schiphol. The length of this
path, as defined above, would be 10 + 15 = 25 minutes. However, this is not the
length of our trip, but the actual time spent in trains! The trip itself took 35 minutes,
due to a 10 minute wait at Shl. This waiting time is caused by the discreteness of train
connections: trains do not depart every instant like an escalator does. Trains have
specific, discrete times of departure and arrival. Time is lost due to gaps between
arrival and the departure of a connection.

2.4. Representing waiting time

Since we would like the length of a path to be the same as the duration of the
trip represented by the path, we have to find a way to include the waiting time in the
length of the path. Some authors suggest to include a mean waiting time in the travel
time (see for instance [Cl, 1972]). If a train goes, say every 10 minutes, then a 5
minute waiting time is added to the travel time. But even if the waiting time is chosen
conservatively, this method just gives some estimate of how long a trip may be. It
does not tell exactly when to leave, nor at what exact time we shall arrive. This is
acceptable in stochastic applications (such as capacity planning or passenger flow
models), where a mean travel time is sufficient; however, when the goal is to provide
specific information about travelling possibilities, this method is not suitable.

Another way to represent the waiting time would be to create two vertices for
each station. One vertex for arriving trains and one for departing trains. The two
vertices are connected by an edge representing the waiting time. But then, what
should be the length of this waiting edge? We cannot decide beforehand because the
waiting time is dependent on the route: dependent on with which train we arrived
and with which train we shall leave again. Let us consider our example (see fig. 2.5).

How long should we make the edge connecting Shlin and Shlout? If we would
have arrived by train 120, the waiting time would be 20 minutes, if we would have
arrived by train 140, 10 minutes. We can solve this problem by adding one vertex per

arriving train and one vertex per departing train. A vertex representing an arriving
train at a station is connected to a vertex representing a departing train from that
station by a waiting edge, if there is sufficient connection time. The length of the
waiting edge corresponds to the appropriate waiting time. Our example would then
look like fig. 2.6. 	 ASSout120

Fig. 2.6.

The above representation would lead to a very large graph in any practical
situation. For instance, consider the Dutch railway service network, consisting of
some 370 stations and almost 50 000 departures from these stations per day. The
resulting graph would have 100 000 vertices (two vertices per train, one per
departure of a train and one per arrival), and in the very best case 100 000 edges:
50 000 travelling edges representing journeys, and 50 000 waiting edges in the
(improbable) case that we need only one waiting edge to connect an arriving train to
the unique connecting departing train, clearly an unacceptable over-simplification.
In the practical case of the Dutch railway service network, on average each station
has about 140 arrivals and 140 departures. On average, each arriving train has a
connection to 70 departing trains So, per arrival we would need on average 70 extra
edges representing a connection, giving 50 000 * 70 = 3 500 000 waiting edges in
addition to the 50 000 travelling edges. Therefore, to represent the Dutch railway
services network in this way, we need some 100 000 vertices and some 3 550 000
edges, while the network ignoring the connections could be represented by some 370
vertices and 50 000 edges.

2.5. A discrete network

To represent discrete connections in an efficient, adequate and more natural
way, we propose a discrete network. In a discrete network the discreteness of the

10 	 11

connections is reflected in the properties of the edges. A discrete network consists of
a finite, weighted, directed graph G = E). Moreover, with each edge e from E we
associate two values:

(1) a start value start(e);
(2) an end value end(e), satisfying start(e) < end(e).

The length of an edge e is defined as:

1(e) = end(e) — start(e) .

In the representation of a railway service network, each train departing from a
station is represented by one edge. The start and end values of the edge represent the
departure and arrival times of the train represented by the edge. The length of the
edge represents the travel time of this train. In our example start(e150) is 8:15,
end(eis0) is 8:30, and l(e150) is 15 (see fig. 2.7.).

A path P in a discrete network is defined as a sequence of edges:

P = e0, 	en

While the length of a path P, l(P), is defined as:

l(P) = end(P) — start(P).

In the representation of a railway service network, the start and end value of a
path are respectively the time of departure and the time of arrival, and the length of
a path the duration of the trip. If we look again at our example (fig. 2.7), the length
of the path elm, elm becomes 8:30 - 7:55 = 35 minutes. Indeed the travel time. If we
consider the path e120, e150, the length becomes 8:30 - 7:40 = 50 minutes.

A connection along the path is a pair of edges {ek, ek+1 }, such that the end
vertex of ek is the start vertex of ek+1. In a railway service network a connection is a
pair of connecting trains (possibly with a train change). The cost of a connection
along the path P, COST, is defined as:

COST(ek, ek+1) = start(ek+i) — end(ek), with 0 k < n.

In the representation of a railway service network, the COST of a connection
represents the time one has to wait for the next train at a station.

such that

(1) The end vertex of ek is the start vertex of ek+1, 0 5- k < n;
(2) end(ek) start(ek+1) , 0 < k < n

The start and end of a path P are defined as:

start(P) = start(e0) ; end(P) = end(en).

Fig. 2.7.

12 	 13

3. Searching A Graph

3.1. Shortest path algorithms

For finding the best railway connections between two stations we need an
algorithm which searches for the shortest path in the graph representing the railway
service network. We distinguish two basic types of graph search algorithms:

(1) Matrix algorithms.
(2) Tree building algorithms.

3.1.1. Matrix algorithms: Floyd's algorithm

Matrix algorithms (see for instance [Da, 1966], [Fl, 1962], [Hu, 1967], [Ye,
1968]) compute the shortests distances and paths between all vertices of the graph
simultaneously by manipulating a I VI * I VI matrix. Since we need the shortest path
between two specific vertices only, the source vertex and the goal vertex, these
algorithms are inefficient for our purpose. However there is one interesting property
of the matrix algorithm by Floyd [Fl, 1962]: it allows negative length edges and even
negative length circuits in a directed, weighted graph. We shall describe Floyd's
algorithm.

Let G be a finite directed graph (l; E). V = {1, 2,.., n }. Each edge e from E has
a length 1(e), which may be negative. Define an n by n matrix d0 in which:

j) = 1(e), if e: i -> j, e EE

and

d0(i, j) = inf, otherwise.

Floyd's algorithm is as follows:

14 	 15

* Type (1) vertices
o Type (2) vertices
• Type (3) vertices

(1) k 4- 1 .

(2) For every 1 5.. i, j ...5.. n compute Ok(i, j) 4.- min { ok-1(i, j), d1-1(i, k) + ok-i (lc, j)} .

(3) If k = n then stop.
Else k <- k + 1 and go to step (2).

It can be shown that after termination, (3°(i, j) contains the length of the shortest
path from i to j. See for instance, [St, 1974] or [Ev, 1979]. In the kth step of Floyd's
algorithm the matrix contains all shortest paths, allowing to use only a subset of

vertices 1 to k as intermediate vertices. The basic operation is to check in the kth step
whether a route can be improved by using a route already found (which was found
allowing only vertices 1 through k-1 as an intermediate vertex), and going through
vertex k (thus a route allowing vertices 1 through k as intermediate vertices). Notice
that during each phase of the algorithm all matrix entries are tried to construct better
paths. This means that even non-existent connections (characterized by a matrix
entry containing 00) are tried. At all times, only (the length of) the best known path
between each possible pair of vertices i and j is stored in the matrix entry O(i, j).

3.1.2. Tree building algorithms

Tree building algorithms, also known as labeling algorithms, build a tree of
paths from the source to the other vertices of the graph. Generally, the shortest paths
from one vertex to all other vertices are found. In these algorithms, the distance of
the currently best know path from the starting vertex to a vertex v is remembered by
its label A(v). All tree building algorithms use the same principle: first they initialize
all distances (A's) to infinity, during the remaining of the searching process the
characteristic operation is:

A(v) = Min(A(v) , A(u) + 1(eu•v))

This operation checks whether the currently known shortest distance between the
source vertex and vertex v (which is the label of v, A(v)), can be reduced by adding the
edge e.,,, with length /(e.,), to the shortest path tree. It is checked whether the
current distance to v can be reduced by using a path via vertex u. Notice that only
existing connections are tried (which was not the case in Floyd's matrix algorithm).

Within the tree building algorithms two types of algorithms are distinguished:

(1) Label correcting algorithms;
(2) Label setting algorithms.

16

During the search process of a tree building algorithms three types of vertices
can be distinguished, shown in figure 3.1.

(1) vertices that are part of the current shortest path tree;

(2) vertices that are adjacent to the vertices in the shortest path tree;

(3) other vertices.

Fig. 3.1.

The vertices adjacent to the vertices in the shortest path tree are also called

loose-end vertices, as they are adjacent to the loose ends of the tree branches.

3.1.2.1. Label correcting algorithms: Moore's algorithm

A prominent example of a label correcting algorithm is an algorithm known as
Moore's algorithm [Mo, 1957], similar algorithms were published by Ford [Fo, 1956]
and Bellman [Be, 1958]. In his paper Moore describes four algorithms, we shall limit
ourselves to the most important one. The others are, in fact, derived special cases.

Consider a finite directed graph (K E). Each edge e from E has a length 1(e)

which may be negative. The two special vertices s and t of the graph are the starting

and terminating vertices. We want to find a shortest directed path from s to t, where

the length of a path is the sum of the lengths of its edges. The label A(v) of a vertex v
was explained above. Here is Moore's algorithm:

(1) A(s) <- 0 and for all y E V, v s, A(v) 4- 00

(2) T <- { s} .
(3) If T is empty, stop.

17

(4) Let u be a vertex in T.
(5) For every edge e : u v,

if A(v) > A(u) + l(e)
then A(v) A(u) + 1(e) and T T + v} .

(6)T4-T— {u} and go to step (3).

It can be shown that after termination in step (3), the label of each vertex u,
2(u), contains the length of the shortest path from the source vertex s to the vertex u,
see for example [St, 1974]. In Moore's algorithm a vertex can become part of the
shortest path tree (in step (6)) and be put again in the loose-end table (the collection
T, in step (5)) multiple times, which may be inefficient. Each time the vertex
becomes part of the shortest path tree its label is corrected. Hence the term label
correcting algorithm. At all times per vertex only the best known path is
remembered by its label A. Note that Moore's algorithm does not stop until the
entire graph has been searched and the distances of the shortest paths from the
source vertex to all other vertices are known.

3.1.2.2. Label setting algorithms: Dijkstra's algorithm

A prominent example of a label setting algorithm is an algorithm known as
Dijkstra's algorithm [Di, 1959] Similar algorithms were published by Whiting and
Hillier [Wh, 1960]. We shall describe Dijkstra's algorithm, which is often considered
to be the best algorithm to search a finite, directed graph whose edges have
non-negative lengths.

Consider a finite directed graph (VE), where V is the set of vertices and E the
set of directed edges joining two vertices from V. Each edge e from E has a length
l(e) 0. The two special vertices s and t of the graph are the starting and terminating
vertices. We want to find a shortest directed path from s to t, where the length of a
path is the sum of the lengths of its edges. The label 2(v) of a vertex v was explained
above.

(1) 2(s) 4-- 0 and for all v E V, v s, A(v) oo .
(2) T4- V.
(3) Let u be a vertex in T for which 2(u) is minimum
(4) If u = t, stop.
(5) For every edge e : u v,

if v E T and 2(v) > A.(u) + 1(e)
then 2(v) <- 2(u) + l(e) .

(6) T T — { u} and go to step (3).

18

Dijkstra's algorithm can be shown to find an optimal path (when available) from
s to t, see for example [Ev, 1979]. Each vertex in the network is labeled with its
distance 2 from the source vertex along the best path that is known at the time of
labeling. When the label of a vertex is made permanent in step (3), we have found a
(there may be ties) shortest route (from s) to that vertex. The difference with
Moore's algorithm lies in the selection of the vertex to be examined from the
loose-end vertices (step (4) in Moore's algorithm and step (3) in Dijkstra's
algorithm) and in the fact that only the vertices which are not part of the shortest
path tree (the collection T) are considered for relabeling in step (5). Step (5) is
called the examination of a vertex u.

Note that in this (original) definition of Dijkstra's algorithm the type 2 vertices
(vertices adjacent to the vertices in the shortest path tree) are not distinguished from
the type 3 vertices (vertices not part of, and not adjacent to, the shortest path tree).
There is only a distinction between permanently labeled vertices (vertices that are
part of the shortest path tree) and tentatively labeled vertices (the collection T). In
Dijkstra's algorithm, in step (3) the vertex with the smallest distance from the source
(i.e. the smallest label) and which has not been made part of the shortest path tree is
chosen. All tentatively labeled vertices are considered. There is no distinction
between vertices labeled with infinity (type 3 vertices) and vertices with a label
unequal infinity (type 2 vertices). By choosing the vertex with the smallest label, no
shorter path to this vertex can possibly be found later on. When a vertex becomes
part of the shortest path tree (in step (6)), its label 2 is made permanent. It is set and
cannot change anymore. Hence the term label setting algorithm. Also, a vertex is
examined only once. That is why these algorithms are also called once-through
algorithms (the term was suggested by Murchland [Mu, 1967]). Furthermore,
Dijkstra's algorithm stops as soon as the length of the shortest path from the source
to the goal vertex is known. This may mean that for other vertices than the goal
vertex, the length of the shortest path from the source has not yet been determined.
By changing the stopping criterion in step (4) to a test whether T is empty, the
algorithm will not stop until all shortest paths have been found. Clearly these
properties make Dijkstra's algorithm, and label setting algorithms in general, more
efficient than label correcting algorithms. Note that in a label setting algorithm also,
at all times, per vertex only (the length of) the best known path is remembered by its
label A.

3.1.2.3. An improvement of Dijkstra's algorithm

As mentioned above, in the original definition of Dijkstra's algorithm all
tentatively labeled vertices are considered for examination in step (3). No distinction

19

is made between vertices labeled with infinity (type 3 vertices) and vertices with a
label unequal infinity (type 2 vertices), as with Moore's algorithm. We can easily
incorporate such a distinction in Dijkstra's algorithm by the introduction of a
loose-end table: a collection F which we prefer to call the frontier. Dijkstra's
algorithm becomes:

(1) A(s) 4- 0 and for all I/ E V, v # s, A(v)
(2) T <- V , F 4- {s} .
(3) Let u be a vertex in F for which A(u) is minimum; if F is empty then stop, no path

could be found.
(4) If u = t, stop, an optimal path is found.
(5) For every edge e : u -, v,

if v E T and A(v) > A(u) + 1(e)
then A(v) <- A(u) + 1(e) and F .1- F + {v} .

(6)Ti-T—{u},F+-F—{u} and go to step (3).

As before, the collection V contains all vertices which have not been made
permanent yet. The collection F contains all vertices which have not been made
permanent yet, but which have been visited at least once. Selecting the vertex to be
examined, it makes no sense to consider vertices which have never been visited yet
and which are still labeled with infinity For when we make a vertex permanent, its
label is the length of the shortest path from the source to this vertex, and in order to
know that distance, we must have visited this vertex at least once. Considering only
the vertices in the frontier makes the algorithm more efficient, especially in the early
stages of the searching process when most vertices have never been visited yet and
are still labeled with infinity.

3.2. Remembering the route of the shortest path

The algorithms as discussed above determine the length of the shortest path
between two (or more) vertices. However, usually we are not only interested in the
length of the shortest path, but also in the route of the shortest path. In order to
obtain the route of the shortest path in the algorithms discussed above, apart from a
label, a vertex is given a backvertex. The backvertex is set to the vertex from which
the current label was set (the vertex u in step (5) of the description of Dijkstra's
algorithm) By traversing the backvertices the route of the shortest path can be
constructed.

20

3.3. The dynamic programming principle

The property that characterizes all shortest path algorithms is that at all times
per vertex only the best known path is remembered. The foundation of this property
is that when we have found a shortest route from s to t, if this shortest route passes

through vertex b, then a shortest route from s to b, a partial path, is part of the
shortest route from s to t (the complete path). There may be several shortest paths;
this slight complication will be ignored here. If we remember the best known path
per vertex, we can never miss an optimal path in case this vertex turns out to be on
an optimal path. Therefore, for each vertex only one path, the best partial path,
needs to be remembered. This result is known as the Markovian property, the

principle of optimality for dynamic programming (see, for instance [Hi, 1986]) and as
the dynamic programming principle (see for instance [Wi, 1984]). For problems in
general, the Markovian property means that knowledge of the current state conveys
all the information about its previous behaviour necessary for determining the
optimal policy henceforth. Or more theoretically: the conditional probability of any
future "event", given any past "event" and the present state, is independent of the past
event and depends upon only the present state of the process.

3.4. Searching bidirectionally

When only the shortest path between two vertices is needed, it is appealing to
start searching from both the source vertex and the goal vertex simultaneously.
According to Murchland [Mu, 1967], when using a bidirectional algorithm, the
savings in computation time over the normal, unidirectional algorithm is about 50
percent. A modified label setting algorithm can be used to construct trees from both
the source and the goal, adding branches to the two trees in an alternating way.
Whenever the two trees touch we have found a path from the source to the goal. The
important issue is how to decide when the algorithm may be terminated, preserving
optimality of solution. We cannot stop after the first time we have found a complete
path. The stopping criterion was given by Nicholson [Ni, 1966].

Suppose that the last vertex we have made permanent in the tree built from the
source vertex is us, and that ug is the last vertex made permanent in the tree built
from the goal vertex. Then we know that all vertices adjacent to vertices of the
shortest path tree from the source vertex have been visited, and moreover that they
have a distance from the source greater than or equal to A(us). Similarly, all vertices
adjacent to vertices of the shortest path tree from the goal vertex have been visited
and they have a distance from the goal greater than or equal to A(ug). So, every path
from the source to the goal vertex using a vertex which is not part of either shortest
path tree, must have a length of at least A (u s) + Mug). It is easily seen that if the

21

length of a shortest path from the source to the goal vertex which has actually been
found (this path must use only vertices which are part of at least one of the shortest
path trees, otherwise we would not have found it yet) is smaller than or equal to
).(us) + A(ug), that this shortest path is an optimal path. For more discussion of
bidirectional search see [Lu, 1989] and [Po, 1971]. Searching Discrete Networks
3.5. Conclusion

Since we need a graph search algorithm giving a shortest path between two
vertices only, a matrix algorithm which searches for shortest paths between all
vertices simultaneously, is inefficient for our purpose. Of the tree building
algorithms, which search for the shortest path from one vertex to all other vertices,
the label setting type is the most efficient one. So for our application, the obvious
choice is to use (the improved) Dijkstra's algorithm as described above. We shall not
use a bidirectional version for reasons which will become clear later on.

4.1. Adapting Dijkstra's algorithm to discrete networks

Now that we have decided which graph search algorithm is best suited for our
purpose, Dijkstra's algorithm, we adapt it to discrete networks. Ina discrete network
each edge has a discrete start and end value, so in Dijkstra's algorithm we have to
change the labeling step (step (5)). In Dijkstra's algorithm we add the length of an
edge to the label of the start vertex of this edge and compare it to the label of the end
vertex. In a discrete network we compare the end value of an edge to the label of its
end vertex. Furthermore, before trying an edge, we must check whether its start
value is greater than or equal to the label of the start vertex (the condition of a
discrete path) Finally we must also give a desired start value of the path (which
would correspond to the desired time of departure in a railway service network
representation). Here is Dijkstra's algorithm for a discrete network (we use our
improved version):

Consider a discrete network (KE), where Vis the set of vertices and E the set of
directed edges. Each edge e from E has a start value start(e) and an end value end(e),
with start(e) < end(e). The two special vertices s and t of the network are the starting
and terminating vertices. We want to find a discrete path from s to t in our discrete
network, where the end value of the path is minimum and the start value of the path
is at least Tstart:

(1) A(s) Tstart and for ally E V, v s, A(v) 4- 00 .

(2) T V , F 4- { .
(3) Let u be a vertex in F for which A(u) is minimum; if F is empty then stop, no path

could be found.
(4) If u = t, stop, an optimal path is found.
(5) For every edge e : u v for which start(e) A(u),

if v E T and yl,(v) > end(e)
then A.(v) F end(e) and F F F + {v} .

(6)T<-T—{u},F<-F—{u} and go to step (3).

22
	

23

We proof by induction on the number of steps that when a vertex u becomes
permanent in step (3), we have found a path from s to u for which the end value is
minimum In the first step, we know that u = s. Since A(s) is Tstart this is evidently
true. Suppose at the el step we make un permanent with a value of Tk determined by
some path Pi = s, e0, 	en-t, un. Now suppose there exists another path from
s to un with an end value less than Tk, say the path P2 = s, ea, V a+1,..., V p, ep, un. There
are two possibilities: either vertex vp has already been made permanent, or it has not
been. If it has, then ep must already have been tried when vp was made permanent, so
un would have been labeled then and we would have found that path. Now consider
the case that vp is still tentatively labeled. Either the label of vp is greater than or
equal to the label of un, or it is smaller. In the first case the path P2 cannot have a
smaller end value than Tk since the end value of the edge ep connecting vp and tint
must be greater than its start value, which must be at least the label of vp. If the label
of vp is smaller than the label of un, then vp would have become permanent at the
kth instead of un, allowing un to be labeled from vp (using ep).

4.2. The principle of optimality for discrete networks

The foundation of the algorithm is formed by an assumption similar to the
dynamic programming principle. We shall refer to this assumption as the principle of
optimality for discrete networks:

In a discrete network, let A(u) denote the minimum end value of any path from s to
u in the network. If there exists a path in the network, from s to t which passes
through vertex u and with a minimum end value, then the path which gave u its label
A(u) is part of a path from s to t with a minimum end value.

For the proof, suppose the contrary: there exists an optimal (discrete) path from s to
t which passes through u:

P opt = s, 	u, ei+1,..., eq, t

with end(ei) A(u), and suppose there does not exist an optimal path for which the
end value of the partial path to u is A(u).

We know that

end(e) A(u).

Suppose that the partial path which gave u its label / is:

P2 = S, ea, va+1,..., ek, u.

Since by the definition of 1, end(ek) = A(u), we know that

end(e) end(ek).

And since start(ei+i) must be at least end(e), we know that

start(ei+i) end(ek).

But then it is possible to construct an optimal path from s to t:

s, ea, Va+1,..., ek, U, ej+1,..., eq, t

a path which passes trough u, for which the partial path to u has an end value of
A(u). Which is a contradiction.

43. An example

Let us consider the following example (see fig. 4.1). Suppose we want to travel
from Utg to Asd, and that we want to depart at or after 7:00.

100 110 160 Station
Utg 7:00 7:10 Uitgeest
Him 7:15 7:25 Haarlem
Ass 7:30 7:40 7:45 Amsterdam Sloterdijk
Asd 7:50 Amsterdam Central Station

In the first step, Utg gets labeled with 7:00 and is put in the frontier. Utg
becomes permanent and all outgoing edges from Utg are tried, in this case edges 100
and 110. Hlm is labeled 7:15 by trying edge 100, and is not relabeled by edge 110.
Hlm becomes permanent and from Hlm we try edges 100 and 110. Ass gets labeled
7:30 by 100 and is not relabeled by edge 110. Ass becomes permanent and edge 160
is used to label Asd 7:50. Then Asd becomes permanent and we have found a path
with an optimal end value.

4.4. Relevant edges

The first thing that can be noticed from the previous example is that we try
edges which are irrelevant. When Utg became permanent, we tried edge 100 and
then edge 110. However, since edge 100 could be applied, and since edge 110 has the

24 	 25

Utg 4.5. Suboptimality of solution

The second thing that can be seen from the previous example is that, although
the algorithm does give us a path with an optimal end value, this is not really the
solution we would like to get. We asked for a trip from Utg to Asd departing at or
after 7:00. The proposed solution to take train 100 from Utg to Ass and train 160
from Ass to Asd, indeed makes us arrive as early as possible (7:50) while departing
at 7:00. So, this answer does satisfy our question. But we could have made another
trip also arriving at 7:50, but departing 10 minutes later by taking train 110 from Utg
to Ass, instead of train 100. Obviously this solution is better! This problem is caused
by the discreteness of the connections. Or more to the point, by the cost of the
connections: COST (see chapter 2). In the example, since we had to wait for 15
minutes for our next train at Ass, we might have taken one later train from Utg to
Ass, still arriving in time for our connection.

4.6. An optimal path in a discrete network

Clearly, we need a better definition of what we consider to be an optimal path
in a discrete network. In a railway service network, an optimal trip makes us arrive
as early as possible, and given this earliest arrival time, allows us to leave' as late as
possible, making the trip as short as possible. Similarly we define an optimal path in
our discrete network. Given a discrete network G = (V, E), two vertices s, t, E V,
and a starting value Tstart, a discrete path P from s to t in G is optimal if the following
three ordered conditions hold:

(1) start(P) 	Tstart, and
(2) end(P) is minimum, and
(3) start(P) is maximum, or equivalently l(P) is minimum.

If a path P satisfies the first two conditions only, we call P suboptimal.

4.7. Traversing the suboptimal solution

From our example it may seem that, in order to find the optimal solution given
a suboptimal solution, it suffices to traverse the suboptimal solution in a backward
fashion, trying to improve it. At each vertex, we search for the edge from its
backvertex, with the highest possible end value smaller than or equal to the label of
the current vertex (the end vertex of the edge). In our example, at Ass we search for
the edge connecting Him and Ass with the highest end value smaller than or equal
to 7:45. This way the optimal solution would be found. In general, however, there is
no guarantee that the optimal solution always uses the same route as the suboptimal
solution. For instance, consider the following example (see fig. 4.2).

100
	

110

110

Hlm Asd
100
	

160
Fig. 4.1.

same end vertex and the same length as edge 100, but a higher start value, we know
for sure that edge 110 can never be used to improve a label. Given a label and an end
vertex, only one edge departing from a vertex needs to be tried: the relevant edge.
We define the relevant edge as follows:

Given a vertex u and a vertex v, then the relevant edge from u to v is the edge
e: u -› v for which the following two ordered conditions hold:

(1) start() A(u),
(2) end(e) is minimum.

With this definition, step (5) of our algorithm can be changed to:

(5) For every relevant edge e : u -' v,
if v E T and A(v) > end(e)
then A(v) end(e) and F F + {v} .

This way, only one edge per neighbour is tried for relabeling this neighbour. If
the relevant edge can be used to relabel the neighbour, than the other edges cannot
be used to improve the label even further since for any other edge to this neighbour
but the relevant edge, either its start value is smaller than the label of the start vertex
(so it may not be used to construct a discrete path), or its end value is greater than or
equal to the end value of the relevant edge, so it cannot further improve the label. If
the relevant edge cannot be used to relabel a neighbour, then neither can any of the
other edges to this neighbour for the same reasons.

26 	 27

Utg

100

Hlm
Ass

Fig. 4.2.

100 125
Utg 7:00 7:10
Hlm 7:15
Zd I 7:30
Ass 7:30 7:40
Asd

For a trip from Utg to Asd leaving at 7:00, the suboptimal solution found by our
algorithm is by the route Utg, Hlm, Ass, Asd (train 100 and train 160, departing at
7:00 and arriving at 7:50) while the optimal solution is by the route Utg, Zd, Ass, Asd
(train 125 and train 160, departing at 7:10 and arriving at 7:50). This optimal solution
cannot be found by simply traversing the suboptimal solution.

We are not able to find the optimal solution with our algorithm because a
non-minimum label might lead to an optimal solution. The smallest, minimum label
may, or may not. It all depends on what the start value of the next connection will be,
which in turn depends on its next connection etc., ultimately depending on the start
value of the final edge, and thus its end value. In the end the greatest possible start
value depends on the smallest possible end value of the path. If we would want to be
able to find the optimal solution in our algorithm, instead of having to develop
further only one arriving path per vertex (the one giving it its minimum label), we
would have to develop further all arriving paths (ending with non-minimum labels),
resulting in a combinatorial explosion.

4.8. Finding the optimal solution: the second pass

To avoid a combinatorial explosion in the first pass, in order to find the optimal
solution we make a second pass. After we have found the earliest possible end value

of a path, we conduct a second, backward search in order to find the matching
earliest possible start value. This way the first pass can remain the same, avoiding a
combinatorial explosion. For the backward search Dijkstra's algorithm is changed in
a straightforward way. Let the label of vertex in the second, backward search be
denoted by K. The algorithm for the backward pass then becomes:

(1) K(t) A(t) and for all v E V, v # t, K(v) — co
(2) T 4t- V , F 	t} .
(3) Let u be a vertex in F for which K(u) is maximum; if F is empty then stop, no path

could be found.
(4) If u = s, stop, an optimal path is found.
(5) For every relevant edge e : v u,

if v E T and K(v) < start(e)
then K(v) start(e) and F 4- F + { v} .

(6) T 4- T — { u }, F.,-F— {u} and go to step (3).

Note that we are searching backwards: we search from the terminating vertex t
to the starting vertex s. At the start the label of t is made the value that we have found
in the forward search as the smallest possible end value, which is the label A.(t) of the
goal vertex. Since we are searching backwards, we search for a path with a maximum
start value. Also note that for the backward search the definition of a relevant edge
is different. In the backward search the relevant edge from u to v is the edge
e: u -> v for which the following two ordered conditions hold:

(1) end(e) K(v),
(2) start(e) is maximum.

The proof of the backward version of the algorithm is similar to the proof of the
forward version.

4.9. Using the results from the first search

Our second, backward search need not be a complete search. We can use the
results from the first pass to limit the search of the second pass. In the previous
example, when traversing the optimal solution, we would have wanted to know that
we should go back not only to Hlm, but also to Zd.

First, in the backward search, we only need to consider those vertices u for
which a minimum path was found in step (3) of the (forward) algorithm. The other
vertices in the network could not be reached by a path with an end value smaller than
%(t) (since they had not become permanent yet). Therefore these vertices can never

Asd

160
	

Station
Uitgeest
Haarlem
Zaandam

7:45 Amsterdam Sloterdijk
7:50 Amsterdam Central Station

28 	 29

be on a path arriving at t with an end value smaller than or equal to A(t), and with a
start value of at least Tstart.

For the proof, suppose that vertex u was not made permanent in the first,
forward search, but there does exist a path s,..., 	t for which the start value is at
least Tstart and the end value smaller than or equal A(t). Then obviously, A.(u) < A(t)
(since we do not allow zero-length edges in a discrete network), so in the forward
search u would have been made permanent before t. If we would allow zero-length
edges, by the way, we would have to make sure that, if in step (3) of the algorithm
there are multiple vertices with a minimum label, then a non-terminal vertex is
chosen.

Second, the additional information we want (i.e. also try Zd in the example)
becomes available if we store neighbour dependent A's, i.e. the smallest end value that
could be used to label a vertex from each of its neighbours, instead of storing the best
end value only. Per neighbour we store which was the smallest end value which was
tried for relabeling. Even if the relabeling did not actually take place because the
vertex had been labeled with a smaller value from another neighbour already! In our
second, backward search, we only need to consider those neighbours v of a vertex u,
for which its would have been at most K(u). Let us denote this neighbour
dependent A. by co. So, the smallest end value that was tried to label u from v is
w(u, v).

For the proof, note that from the correctness of our forward pass we know that
there does not exist a path s,..., v, u for which the start value is at least Tstart and for
which the end value is smaller than w(u, v). Similarly, we know that when we make u
permanent in our backward search, there does not exist a path u,..., t for which the
start value is smaller than K(u), and the end value is at most A(t) (the end value of the
suboptimal path for which we have to determine the matching maximum start
value). So, if co(u, v) > K(u), then there cannot exist a path s,..., v, 	t for which
both the start value is at least Tstart, and the end value is at most A(t).

In our example, w(Ass, Hlm) is 7:30 and co(Ass, Zd) is 7:40. Since K(Ass) is 7:45
we need to visit both Hlm and Ass. Now consider the next example (see fig. 4.3):

100 160 135 Station
Utg 7:00 7:20 Uitgeest
Him 7:15 Haarlem
Zd I 7:40 Zaandam
Ass 7:30 7:45 7:50 Amsterdam Sloterdijk
Asd 7:50 Amsterdam Central Station

Ass
Fig. 4.3.

In this example w(Ass, Him) is again 7:30 and w(Ass, Zd) is 7:50. Since K(Ass)
is 7:45 we do have to visit Hlm but we do not have to visit Zd. In our first, forward
search we determined that Ass could not be reached earlier than 7:50 travelling by
Zd, departing at or after 7:00 (which is stored by w(Ass, Zd)). In our second,
backward search we find that if we want to arrive at Asd at 7:50, we must be able to
arrive at Ass before or at 7:45 (which is stored by K(Ass)). So, in our backward search
it is not necessary to visit Zd, for it is not possible to travel via Zd if we want to depart
at or after 7:00 and arrive at 7:50.

Earlier we said that it is important to record the smallest possible label from
each neighbour even if relabeling does not actually take place. Let us take a look at
another example to see why (see fig. 4.4).

300 400 Station
Utg 7:00 7:20 Uitgeest
Him I 7:35 Haarlem
Zd 7:20 I Zaandam
Ass 7:30 7:50 Amsterdam Sloterdijk
Asd 7:55 Amsterdam Central Station

Suppose we want to travel from Utg to Asd, departing at or after 7:00. In the
forward search, first Utg becomes permanent labeled 7:00. Zd becomes permanent
labeled 7:20, Ass becomes permanent labeled 7:30 and Hlm becomes permanent
labeled 7:35. When the neighbours of Hlm are examined, Ass is not even tried for
relabeling because Ass is not a member of T, as is required in step (5). Ass is already
part of the minimum path tree, so its label cannot be further improved. Because Ass
is not even tried for relabeling, w(Ass, Hlm) is not set to 7:50. After we have found

Asd

30 	 31

Asd

(2) T4-V, F4-- {s} .

(3) Let u be a vertex in F for which A(u) is minimum; if F is empty then stop, no path
could be found.

(4) If u = t, stop, a path with an optimal end value has been found.

(5) For every relevant edge e : u v,
if v E T and),(y) > end(e)
then A(v) end(e) and F F + { y} .
if end(e) < w(v, u)
then w(v, u) 4- end(e).

(6) T4- T — {u}, F 4- F — ul and go to step (3).

A relevant edge is defined as follows: given a vertex u and a vertex v, then the
relevant edge from u to v is the edge e: u v for which the following two ordered
conditions hold:

Ass
Fig. 4.4.

the path Utg, Zd, Ass, Asd representing a trip with trains 300 and 400, we start
searching backwards. In the backward search, K(Ass) becomes 7:50 but since we did
not record w(Ass, Him) we do not visit film.

In order to ensure optimality, we must make a record of the fact that we could
have tried to relabel a vertex with a certain value, even though we did not even try to
relabel it because the vertex had already been made permanent. We invest a little in
the forward search in order to gain in the backward search. This way, in the backward
search the search space examined can be significantly smaller than a full backward
search.

4.9.1. A two-pass algorithm: DISNET

Finally, we give a formal definition of the two-pass search algorithm which finds
an optimal path in a discrete network (if there exists one). We shall refer to this
algorithm as the DISNET algorithm.

Consider a discrete network (KE), where Vis the set of vertices and E the set of
directed edges. Each edge e from E has a start value start(e) and an end value end(e),
with start(e) < end(e). The two special vertices s and t of the network are the starting
and terminating vertices. We want to find a discrete path from s to t in our discrete
network, where the end value of the path is minimum and given this end value, the
start value of the path is maximum and at least Tstart.

Pass 1:

(1) ,t(s) Tstart and for all y E v, v # s, A(v) 4- 00 .
For all y E V, w(v, u) = 00 for every neighbour u of v.

(1) start(e) 4u), and
(2) end(e) is minimum.

Pass 2:

(1) K(t)).(t) and for all y E V, y # t, K(v) — 00 .
(2) T4- V , F 	t} .
(3) Let u be a vertex in F for which K(u) is maximum.
(4) If u = s, stop, an optimal path is found.
(5) For every relevant edge e : v u, with w(u, v) ic(y),

if v E T and K(v) < start(e)
then K(y) start(e) and F F + yl .

(6) T -T— {u}, F F — {u} and go to step (3).

A relevant edge is defined as follows: given a vertex u and a vertex v, then the
relevant edge from u to v is the edge e: u v for which the following two ordered
conditions hold:

(1) end(e) ic(v), and
(2) start(e) is maximum.

By the correctness of the first pass, after the first pass we have found a path P1
for which start(Pi) Tstart and for which end(P1) is minimum By the correctness of
the second pass, we know that after the second pass we have found a path P2 for
which in addition, start(P2) is maximum. So, the algorithm gives an optimal solution.

32 	 33

Discrete Dynamic Networks

5.1. Visiting costs

Until now we have been ignoring one particular property of travelling by train:
time is required to change trains. In a graph representation this translates into a
visiting cost at a vertex. In the previous chapter, a train change was dealt with in the
graph, by the definition of a relevant edge. For instance, in the forward pass of the
algorithm, the definition of a relevant edge is: given a vertex u and a vertex v, then

the relevant edge from u to v is the edge e: u -' v for which the two following ordered

conditions hold:

(1) start(e) A(u), and
(2) end(e) is minimum.

We can continue on an edge if the start value of the edge is greater than or equal to
the label of its starting vertex (which is the end value of the arriving edge). In our
railway service representation, this would mean that we can continue on a next train
if it departs at or after the time of arrival of our previous train. Of course, this is not
true in reality. The only case that we can continue on a train which departs at the
same time as the arrival of our previous train, is when these trains are the same one!
When the trains are not the same, then the arrival of our previous train and the
departure of the next train must be separated by some minimum amount of time: the
changing time or connectional margin. In the Dutch railway service network, the
connectional margin is not a fixed value. At one station it is 2 minutes, at some other
station it is 5 minutes. Even worse, at one single station the connectional margin
required for two specific trains may be 2 minutes, while for some other pair of trains
it is 5 minutes. At any station the connectional margin may range from 0 minutes (no
change) to 5 minutes, depending on the connection.

5.2. Platform dependency

One of the causes of variances in connectional margins is the fact that different
trains may arrive on or depart from different platforms. If our connection departs

34 	 35

Inter Platform Connections

Train connections
Train connections

Fig. 5.1.

from the same platform as we arrived on (or in the case of a "cross platform" change),
we need little time to change trains. If, in order to go to the departure platform of our
next train, we need to walk several stairs, we need more time. It seems promising to
represent connectional margins in a similar way. Each vertex (representing a station)
is split into several different vertices. For each platform we use one vertex for
incoming edges (representing trains arriving at a particular platform), and one
vertex for outgoing edges (representing trains departing from a particular platform).
If a station has 3 different platforms, it is represented by 6 vertices. Each vertex
representing an "arrival platform" is connected by an "inter-platform" edge to all
vertices representing "departing platforms". In the case of 3 different platforms we
need 9 of these inter-platform edges. The length of the inter-platform edge is made
the time that is required to go from one platform to the other. For an example, see
fig. 5.1. Obviously, the disadvantage of this approach is that the size of the network
increases. If a station has p platforms on average, then the number of vertices
becomes 2 *p * IVI, and the number of edges needed for the inter-platform

connections isp2 * I VI .

5.3. Train dependency

Unfortunately, the connectional margins not only depend on the platforms of
arrival and successive departure. Another factor which contributes to the time
required to change trains is delay sensitivity. We should not forget that the
timetables give only the planned times. In reality delays occur. Some connections are
guaranteed by the railroad company. If a delay is less than, say, five minutes, then the
connecting train is held up. Some connections are not guaranteed however, and
although in theory one should be able to make the connection, in practice due to
delays this is usually not the case. Even a minimal delay of one single minute may
mean a miss. Therefore, these non-guaranteed connections are often given

36

connectional margins which are greater than the time required for the platform
change only. Some margin specific for the particular connection is added. Instead of
just platform dependent, in reality, the connectional margin may be train (edge)
dependent. Trying to represent an edge dependent connection cost in the way the
platform dependency can be represented as described above, may lead to a
representation with one vertex per incoming and one vertex per outgoing edge. This
approach is inefficient with regard to network size, as we saw in chapter two.

5.4. A discrete dynamic network

In order to represent an edge dependent connection cost in a discrete network
in an adequate and general way, we have developed the concept of a discrete dynamic

network. In a discrete dynamic network the edge dependent connection cost is
represented by a connection function CON, which gives the margin required for a
specific connection. A discrete dynamic network consists of two parts:

(1) A finite directed graph (K E), where V is the set of vertices and E the set of

directed edges, each edge of E joining two vertices from V.

(2) A non-negative, real-valued function, called the connection function CON,
having three arguments: a vertex and two edges.

With each edge e from E we associate two values:

(1) a start value start(e);
(2) an end value end(e), satisfying start(e) < end(e).

The length of an edge e is defined as:

1(e) = end(e) — start(e) .

In the representation of a railway service network the vertices represent the stations
and the edges represent the trains. The start and end values of an edge represent the
departure and arrival times of the train represented by the edge. The length of the
edge represents the travel time of this train. The CON function specifies the

(minimum) connection times when changing trains.

A legal path P from s to t (in the discrete dynamic network) is an alternating
sequence of vertices and edges:

S = v0, 	 ek-1, Vk = t

37

38

such that
(1) the start vertex of ei is vi and the end vertex of ei is vi+i, 0 i < k;
(2) and satisfying the following condition along the path, i.e. for 0 i < k :

start(ei+1) end(;) + CON(vi+i, ei, ei+i) .

This condition indicates that if one arrived at vertex vi-1-1 along edge then it is
possible to continue on edge ei+1 if the difference between the start value of the
outgoing edge, start(e,+1), and the end value of the incoming edge, end(ei), is at least
the appropriate connection cost at vertex vi+1 (which depends not only on the vertex,
but also on the incoming and outgoing edges). This minimum connection cost is
CON(v,+1, ei÷i). The actual cost of a connection, COST, is defined as:

COST(vi+i, ei, ei+i) = start(ei+i) — end(;), with 0 i < k.

Clearly:

COST(vi+i, 	ei+i) 	 ei, ei+i).

The start and end of a (legal) path P are defined as:

start(P) = start(e0) ; end(P) = end(ek _1).

While the length of a (legal) path P, l(P), is defined as:

1(P) = end(P) — start(P)

5.5. Space requirements of the CON function

The advantage of the CON function is the space requirement in case of a
network with great differences in characteristics of connectional margins. For
example, in the Dutch railway services network, many stations have a very simple
connectional margin characteristic: 5 minutes in case of a train change, 0 minutes
otherwise. For such a station v CON(v, ei, ei+i) becomes a two valued function:

{

0 if ei and ei+1 represent the same train
5 otherwise

Other stations have structural exceptions. For instance: 4 minutes in case of a
train change from a 4600 series train to a 14600 series train. For such a station v
CON(v, ei+i) becomes a three valued function:

{

0 if ei and ei+1 represent the same train
4 if e, represents a 4600 series train and ei+1 a series 14600 train
5 otherwise

The CON can be implemented as an advanced look-up table per vertex. In case
of a pure train-to-train dependency, each connection is an entry and its size becomes

* 1E1 * 1E1, the same as the size of a representation using connecting edges.
However, when situations as above occur, its size diminishes significantly. Of course,
space is required to store the identification of a train. However, in an application like
a railway service information system, this information has to be present anyway.

r

In the representation of a railway service network, the CON function specifies
the connectional margin required for a specific train change. The connection COST
is the time that is actually spent changing to and waiting for the next train. The start
and end value of a path are the time of departure and the time of arrival. The length
of a path is the duration of the trip, and includes the connection costs. We do not
include the time the passenger may have waited at the station at the start of her trip,
nor the time she might spent loitering at the arrival station. Time needed for
transportation to the station of departure, and from the station of arrival to the final
destination of the trip (which is hardly ever the train station), is also not included.

39

6. Searching Discrete Dynamic
Networks

6.1. Adapting the search algorithm to discrete dynamic networks

In order to construct a search algorithm for a discrete dynamic network, as a
basis we use the search algorithm that we have developed for a discrete network
(DISNET). In a discrete dynamic network the connection function CON is added.
The most apparent place to get the CON function into the algorithm is to include it
in the definition of a relevant edge. Since the CON function is dependent on not only
the vertex, but also on both the next and the previous edge, we have to know with
which edge we labeled a vertex. Therefore we introduce the notion of a partial path.
In the forward case, a partial path is a legal path from the starting vertex to a non
terminating vertex. A complete path is a legal path from the starting vertex to the
terminating vertex. In the algorithm, the frontier F will consist of partial paths to
tentatively labeled vertices, instead of the tentatively labeled vertices themselves.
Only those partial paths which gave a vertex its smallest tentative label are
considered for further development in the algorithm. We shall now give the
DISNET algorithm, in a direct adaptation to discrete dynamic networks.

Consider a discrete dynamic network consisting of the graph G = E) and the
connection cost function CON. The two special vertices s and t of the network are the
starting and terminating vertices. We want to find a legal path from s to t in our
discrete dynamic network, where the end value of the path is minimum and given
this end value, the start value of the path is maximum and at least Tstart.

Pass 1:

(1) A(s) 4- Tstart and for all v E V, v s, il(v) <- 00 .
Create a partial path P0 consisting of s only, end(P0) F Tstart.

For all v E V, w(v, u) = 00 for each neighbour u of v.
(2) T 	, F 4- { P0} .

41 40

A relevant edge is defined as follows: given a partial path uj, ej, 	uk and a
vertex uj-1, then the relevant edge from uj-1 to uj is the edge ej_i: uj-1 -> uj for which
the following two ordered conditions hold:

(1) end(ei-1) s start(ej) — CON(uj, 	ei), and

(2) start(ei-1) is maximum

6.2. A counter example: the effect of CON

Unfortunately, it does not suffice to adapt the algorithm in this straightforward
way. Because of the differences in values that the CON function may return for
different connections at the same vertex, in some cases, the algorithm described
above will not find an optimal path. For instance, consider the following example
(see fig. 6.1). Suppose we want to travel from Utg to Asd, and that we want to depart
at or after 7:00. Furthermore, the changing time is 5 minutes for all train changes at
Ass (and 0 minutes in the case of no train change).

Utg

100

Hlm

100 125 150

Fig. 6.1.

Station
Utg 7:00 7:02 Uitgeest
Hlm 7:15 Haarlem
Zd 7:22 Zaandam
Ass 7:30 7:32 7:40 Amsterdam Sloterdijk
Asd 7:37 7:45 Amsterdam Central Station

In this example, first Utg gets labeled with 7:00. From Utg, Hlm gets labeled
with 7:15 and Zd with 7:22. From Hlm, Ass gets labeled 7:30. From Zd, Ass does not
get relabeled. Consequently, the partial path from Utg to Ass, arriving at 7:32, will
not be developed further (since A(Ass) = 7:30). The path from Utg to Ass arriving at

43

(3) Let Pm be a partial path s, e0, 	 uj in F for which end(Pm) is
minimum; if F is empty then stop, no complete path could be found.

(4) If uj = t, stop, Pm is a complete path with an optimal end value.
(5) If end(Pm) = A(uj)

then for every relevant edge ej : uj -> ujn:
if ujn E T and A.(uj+i) > end(ej)
then A(uj+i) end(ej) and create a partial path

PII = s, e0, 	uj-1, ej-1, up ej, ui+i, F F + { Pn} .
if end(ej) < w(ui+i,ui)

then to(uj+1, 	end(ei).
(6) T4-T— 	F*-F— { Pm} and go to step (3).

A relevant edge is defined as follows: given a partial path u0,..., uj-1i 	uj and a
vertex ujn, then the relevant edge from uj to uj+1 is the edge ej: uj -> uj+1 for which
the following two ordered conditions hold:

(1) start(ej) end(ej-1) + CON(u j, es-1, ej), and
(2) end(ej) is minimum.

In the backward case, a partial path is a legal path from a non-starting vertex to
the terminating vertex. The frontier will consist of partial paths from tentatively
labeled vertices. Only those partial paths which gave a vertex its highest tentative
label are considered for further development in the algorithm. We shall now give the
backward pass:

Pass 2:

(1) K(t) A(t) and for all v EV,v # t, K(v) —00 .
Create a partial path P0 consisting of t only, start(P0) A(t).

(2) T 4- V , F { P0} .

(3) Let Pm be a partial path uj,..., 	ek-1, t in F for which start(Pm) is maximum.
(4) If uj = s, stop, Pm is an optimal complete path.
(5) If start(Pm) =

then for every relevant edge ej-1 : uj-1 -> uj, with w(uj, uj-1)
if uj-1 E T and K(uj_i) < start(ej _1)

then K(u j-1) F start(ej-1) and create a partial path

Pll = 	ei-1) Ui3..., uk-1, 	t, F F + { Pn} .
(6)T4-T— {ad, FE-F— {Pm} and go to step (3).

42

Asd

7:30 does get developed further and Asd gets labeled with 7:45, since the 7:32 from
Ass to Asd may not be used as it is separated from our arrival at Ass by only 2
minutes, while 5 minutes are required. As the earliest possible time of arrival we
incorrectly find 7:45. Consequently, the backward pass will incorrectly find as
optimal solution a trip from Utg to Ass by train 125 and from Ass to Asd by train 150!

63. The invalidity of the Markovian property

The cause of the incorrectness of the algorithm as described above lies in the
fact that a discrete dynamic network does not have the Markovian property (see
chapter 3). The Markovian property means that if a shortest route from s to t passes
through the vertex u, then a shortest path from s to u is part of a shortest path from s
to t. However, this is not the case in a discrete dynamic network. Suppose we have an
optimal legal path from s to t:

Poet = s,...,ei 	t.

Since the path is legal, we know that

start(ei) — end(ej-i) CON(up ej-1,

Suppose there exists a partial path:

s,..., ek-1, uj

such that end(ek-1) < end(ej-1).

It may be so, however, that

start(ej) — end(ek-1) < CON(up ek-1, es).

So,

CON(uj, ej-1, ej) < CON(uj, ek-1, ej)

with end(ek) < end(e J-1).

Therefore it is not possible to construct the path s,..., ek-1, up 	t, which would
have given a new optimal path. Furthermore, the best possible completion of the
best partial path: s,..., ek-1, uj, ek,..., t, may have an end value worse than the end value
of the optimal path Popt. In conclusion, a non-optimal partial path to a vertex may

yield an optimal complete path, while an optimal partial path to that vertex cannot
be used to construct an equivalent optimal complete path.

6.4. The principle of optimality for discrete dynamic networks

Clearly, an algorithm finding an optimal path in a discrete dynamic network
must remember more partial paths per vertex than just the optimal partial path.
Fortunately, we can give an upper bound on the end values of the partial paths which
need to be remembered (and developed further). We shall refer to this upper bound
as the principle of optimality for discrete dynamic networks:

In a discrete dynamic network, let maxiCON(u) denote the maximum value that the
CON function gives for any connection at u (which is non-zero), and let A(u) denote
the minimum end value of any partial path from s to u in the network. If there exists
a legal path P from s to t in the network, with a minimum end value, and which passes
through vertex u, then from the paths from s to u which have an end value which is at
least A(u) and less than A(u) + maxiCON(u), at least one partial path is part of a
complete path from s to t with a minimum end value.

For the proof, suppose the contrary: there exists an optimal path:

Popt = 	ej, u, 	t

with end(ej) A(u) + maxiCON(u),

and there does not exist an optimal path for which the end value of the partial path
to u is within the maxiCON interval.

We know that

end(ei) A(u) + maxiCON(u).

Suppose that the partial path which gave u its label A is:

PA = 	ek, u.

Since by the definition of A, end(ek) = A(u), we know that

end(ei) end(ek) + maxiCON(u).

And since start(ei+i) must be at least end(ej), we know that

44 45

start(ej+i) 	end(ek) + maxiCON(u). 100 115 150 Station
Utg 7:00 Uitgeest

By the definition of maxiCON we know that 	 11lm 7:15 7:18 Haarlem
Ass 7:30 7:33 7:40 Amsterdam Sloterdijk

CON(u, ek, ei +1) < maxiCON(u). 	 Asd 7:38 7:45 Amsterdam Central Station

So,

start(ei+i) end(ek) + CON(u, ek, ej+i).

But then it is possible to construct an optimal complete path

PaIt = 	ek, u, 	t

for which the partial path to u arrives within the maxiCON interval. Which is a
contradiction, since end(ek) A(u) + maxiCON(u).

6.5. Relevant edges in discrete dynamic networks

Since the edge giving a vertex its smallest label may not lead to an optimal path,
while an edge giving it a higher label might, we also need to change the definition of
a relevant edge. To see why, consider the next example (see fig. 6.2). Suppose we
want to travel from Utg to Asd, and that we want to depart at or after 7:00.
Furthermore, the changing time is 5 minutes for all train changes at Ass, and 3
minutes for all train changes at Hlm

Utg

100

115

s 	115
Hlm Asd

100 100

Fig. 6.2.

46

In this example, after Hlm is labeled with 7:15, the relevant edge to Ass is the
7:15 arriving at 7:30. Since this train does not travel further to Asd, and since we
cannot catch the 7:33 at Ass, we then travel to Asd with train 150, arriving at 7:45.
However, we could have changed at Him to train 115 which would have taken us to
Asd, arriving at 7:38! Although this train was not within the maxiCON interval at
Hlm, it is within the maxiCON interval at Ass. From this example we see that with
the current definition of a relevant edge, we could miss edges giving a vertex a label
within the A + maxiCON interval. In order to solve this problem, we define a
relevant edge as follows: given a partial path u0,..., ui-i, 	uj and a vertex uj+i, then
the relevant edges from u j to uj+1 are the edges ei: 	uj+1 for which the following
two ordered conditions hold:

(1) start(ei) end(ei-1) + CON(ui, 	ej), and
(2) end(ej) < end(ernin) + maxiCON(ui+i),

where end(em,n) is the minimum end value of any edge satisfying (1).

6.6. A search algorithm for discrete dynamic networks: DYNET

Now that we have an upper bound on the partial paths that we need to
remember so that we cannot miss the optimal solution, and a matching definition of
a relevant edge, we can construct a search algorithm for discrete dynamic networks.
We shall refer to this algorithm as the DYNET algorithm.

Since we need to remember and develop further multiple partial paths to a
vertex, it may be that one of the partial paths has already been developed further
when another partial path reaches that vertex. Therefore, in step (5) of the
algorithm, we can no longer test whether a vertex has not been made part of the
shortest path tree yet (the test whether the vertex is part of the collection 7). A
vertex can be part of the shortest path tree multiple times. So, the collection T, which
contains all vertices which have not been made part of the shortest path tree, is no
longer necessary.

Consider a discrete dynamic network consisting of the graph G = (KE) and the
connection cost function CON. The maximum value of CON at a vertex u is
maxiCON(u), which is non-zero. The two special vertices s and t of the network are

47

the starting and terminating vertices. We want to find a legal path from s to t in our
discrete dynamic network, where the end value of the path is minimum and given
this end value, the start value of the path is maximum and at least Tstart.

Pass 1:

(1) A(s) 	Tstart and for all y E V, y s,).(v) 4- 00 .
Create a partial path P0 consisting of s only, end(P0) Tstart.
For all v E V, w(v, u) = 00 for each neighbour u of v.

(2) F 4— { P0} .

(3) Let Pm be a partial path s, e0, 	uj_i, ej-1, uj in F for which end(Pm) is

minimum; if F is empty then stop, no complete path could be found.
(4) If = t, stop, Pm is a complete path with an optimal end value.
(5) If end(Pm) < A(uj) + maxiCON(u).

then for every relevant edge ej : uj -> uj+i:
if A.(uj+i) > end(ej)
then A(uj+i) <- end(ej)
if end(ej) < A(uj+i) + maxiCON(ui+i)
then create a partial path Pn = s, e0, 	ui-i, ej-i, uj, ej, uj+1 and

F F +{Pn} .
if end(ej) < co(uj+i, uj)
then co (uj+i, 	end(ej).

(6)F4-F- { Pm} and go to step (3).

A relevant edge is defined as follows: given a partial path u0,..., uj-i, ej-i, uj and a
vertex uj+i, then the relevant edges from uj to uj+1 are the edges ej: uj -> uji-i for
which the following two ordered conditions hold:

(1) start(ej) a end(ej-i) + CON(uj, ej-i, e'), and
(2) end(ej) < end(emin) + maxiCON(uj+i),

where end(emin) is the minimum end value of any edge satisfying (1).

Pass 2:

(1) K(t) F A(t) and for all y E v, v t, K(v)
Create a partial path P0 consisting of t only, start(P0) F A.(t).

(2) F { P0} .
(3) Let Pm be a partial path uj,..., 	ek-i, t in F for which start(Pm) is maximum.

(4) If uj = s, stop, Pm is an optimal complete path.
(5) If start(Pm) > K(uj) - maxiCON(u)

then for every relevant edge ej-i : uj-i -> uj, with (qui, uj-i) 5 start(Pm),

48

if K(uj-1) < start(ej_i)
then K(uj_i) <- start(ej-0
if start(ej-i) > K(uj-1) - maxiCON(uj-i)
then create a partial path Pn = 	uj,..., Uk-1, ek—i, t and

F F + { Pn} .

(6)F4-F- {Pm} and go to step (3).

A relevant edge is defined as follows: given a partial path uj, ej, uj+1,..., uk and a
vertex uj_i, then the relevant edges from ui-i to uj are the edges ej-i: ui-i -> uj for
which the following two ordered conditions hold:

(1) end(ej-i) < start(ej) - CON(uj, ej-i, ej), and
(2) start(ej-1) > start(e m.) - maxiCON(ui-1),

where start(em..) is the maximum start value of any edge satisfying (1).

6.6.1. The correctness of the forward pass

For the correctness of the algorithm we first prove that when in step (3) of the
first pass, a vertex uj is the end vertex of a partial path for the first time, then we have
found a path from s to uj for which the end value is minimum

We remark first that since any path but the zero-length path to s is constructed
in step (5) of the algorithm, the first time we find a partial path in step (3), arriving
at a vertex u # s, its end value must be equal to A.(u).

The first time that we reach step (3), we know that the only path in F is the
zero-length path to s with end value Tstart. Evidently, this end value is minimum

Suppose at the kth time that we reach step (3), for the first time we find a partial
path arriving at u, say the path

= 	ej, u, with an end value end(ej) = A(u).

Now suppose there exists another partial path from s to u with an end value less than
A(u), say the path

Pait 	ep-i, v, ep, u, with an end value end(ep).

There are two possibilities: either the vertex v has already been the end vertex of a
partial path in step (3) or it has not been. We examine both possibilities in turn:

49

Price: 17.50 Swiss francs 	 9 117Z`2-27111-:MIVO

111■111MMIIII

(1) If v has been the end vertex of a partial path in step (3), then there are again two
possibilities: either /1(v) + maxiCON(v) < A(u) or A(v) + maxiCON(v) A(u).

If A(v) + maxiCON(v) < A(u), then any path

= 	eq, v

arriving at v within il(v) + maxiCON(v) must have been selected from F before the
path P. And by the principle of optimality for discrete dynamic networks, one of
those paths could have been used to construct the path

	

Pv,u = 	eq, v, ep, u

with an end value of end(ep).

If .1.(v) + maxiCON(v) > 2(u), then since end(ep) < 2(u), it must be true that
end(ep-1) < 2(u). So, the partial path

Pv = 	ep - 1, v

must have been selected from F in step (3) before the path P. Consequently, in the
following steps this path would have been used to construct the path

Pv,u = 	ep-1, v, ep, u

with an end value of end(ep).

(2) Now consider the case that v has not yet been the end vertex of a partial path in
step (3). Then either the label of v is greater than or equal to the label of u, or it is
smaller.

If the label of v is greater than or equal to the label of u, then the path Past cannot
have a smaller end value than 2(u).

If the label of v is smaller than the label of u, then the partial path which gave v
its label must have been selected from F before Pu, which is a contradiction.

6.6.2. The correctness of the backward pass

For the proof of the backward pass we only need to show that it suffices to
construct those paths to neighbours for which w(uj, 	start(Pm) in step (5),
where Pm = uj, ej, 	 t.

50

The rest of the proof is similar to the proof of the forward pass.

From the correctness of the forward pass we know that there does not exist a

partial path

Ps = 	Uk-1, ek-1, 	ek, uj

for which the end value is smaller than w(uj, uj-1), and the start value is at least

Tstart. So, if

co(ui,uj-i) > start(Pm) = start(ej),

then we know that for every path Ps with a start value of at least Tstart

end(ek) > start(e j).

But then surely for every path Ps with a start value of at least Tstart

end(ek) + CON(u j, ek, ej) > start(e j).

So, there does not exist a path Ps with a start value of at least Tstart, which can be used

to construct a legal path with Pm. Therefore we could never develop an optimal path

out of Pm by using neighbour ui -1.

Since we have proven that the first pass gives the smallest possible end value,
and that the backward pass gives the highest matching start value, the correctness of

the algorithm follows.

6.7. Dynamic generation of vertices

What the algorithm does conceptually speaking, is dynamically generating a
vertex for each arriving edge. Each partial path arriving at a vertex u can be seen as
a vertex for the arriving edge. The edge connecting the vertex to departing edges is
(implicitly) represented by the connection cost function CON. The departing edge is
implicitly represented by the vertex representing the arrival of this edge. In the
algorithm, only those vertices are generated, which represent arriving trains which
may be of interest for an optimal solution. This approach is obviously more efficient
with regard to memory usage, than the vertex representation discussed in the
previous chapter.

51

® General Dynamic Networks

Visiting costs as described in the previous chapter are not restricted to discrete
networks. In this chapter we shall look at an example where visiting costs occur in a
ordinary weighted graph. To represent visiting costs in an ordinary graph adequately,
we propose a dynamic network.

7.1. An example application

If we want to represent a network of roads we can use a weighted graph. The
vertices of the graph represent cities and junctions. The edges of the graph represent
the roads. The length of an edge representing a road is the driving time under normal
driving conditions (not including stops and observing speed limits). A road may be
for instance a state highway, a provincial highway or a secondary road. Driving times
may vary depending on properties such as the class of the road, the number of lanes
and the road surface. Furthermore, extra time may be required when one changes
highways or roads. Changing roads may involve using exit and entry lanes,
roundabouts or connecting roads within a city. Consider the following example (see
fig. 7.1), which is an (imaginary) junction:

A9

AS

AS

A9

Fig. 7.1. 	 Fig. 7.2.

52
53

r

If it takes 2 minutes to change from the A9 to the A5 at the junction (due to
connection characteristics such as traffic lights or due to the decelerating and
successive accelerating), then we cannot add those two minutes to the length of
either the A5 or A9 section, since the cost is not applicable if one travels through on
either the A5 or A9 at the junction. If multiple roads with different connection
characteristics exist between two junctions, then the changing cost may be different
for each road, yielding an edge dependent visiting cost. Rather than using an edge
between the appropriate sections as in fig. 7.2, which requires 4 vertices and 6 edges
in the case of a crossing of two roads, we propose to use a connection function.

7.2. Dynamic networks

A dynamic network consists of two parts:

(1) A finite weighted graph G = E), where Vis the set of vertices and E the set of
edges, each edge of E joining two vertices from V is assigned a non-negative
length.

(2) A non-negative, real-valued function, called the connection function CON,
having three arguments: a vertex and two edges.

A legal path P from s to t (in the graph) is an alternating sequence of vertices and
edges:

	

S = v0, e0,vi,...,vj, ej, v 	ek-1, Vk = t,

such that the start vertex of ei is vi and the end vertex of ei is v,+1, 0 i < k.

While the length of a (legal) path P, l(P), is defined as:

k-1 	 k-1

1(P) = 	1(ei) + E 	CON(vi, el-1, ei).
i=0 	i=1

The length of a path is the sum of the lengths of all edges on the path plus all the
connection costs along the path. In the representation of a road network, the length
of a path represents the driving time of all the roads plus the time lost due to road
changes.

7.3. Searching a dynamic network

Since the discrete aspect of the connections is missing in a dynamic network, we
do not have to make a two-pass search. We can adapt the algorithm we developed for

54

a discrete dynamic network, leaving out those aspects which dealt with the
discreteness of the connections and the two passes. Here is a search algorithm for a
dynamic network:

Consider a dynamic network consisting of the graph G = 	E) and the

connection cost function CON. The maximum value of CON at a vertex u is

maxiCON(u), which is non-zero. The two special vertices s and t of the network are

the starting and terminating vertices. We want to find a legal path from s to t in our
dynamic network, where the length of the path is minimum

(1) A(s) 4- 0 and for all v E V,v s, A(v) <- co .
Create a partial path P0 consisting of s only, end(P0) 4- 0.

(2) F { P0} .

(3) Let P. be a partial path s, e0, 	u j-i, 	ui in F for which l(P) is minimum; if

F is empty then stop, no path could be found.
(4) If ui = t, stop, P. is a path of minimum length.

(5) If end(Pm) < A(uj) + maxiCON(uj).
then for every edge ej : 	ui +1:

if .1.(ui +1) > A(ui) + 1(ej) + CON(uj, e j-i, ei)
then A(uj+i) 	+ l(ej) + CON(uj, ej-i, ej) .

if .1(u) + l(ej) + CON(uj, ej-i, ej) < yl(uj+i) + maxiCON(u j+1)
then create a partial path Pi, = s, e0, 	ui-i, 	uj, ej, uj+1 and

F F +{ Pn} .
(6) F 4- F — { Pm} and go to step (3).

7.3.1. The principle of optimality for dynamic networks

The foundation of this algorithm lies in an assumption similar to the principle of
optimality for dynamic programming. We shall refer to this assumption as the
principle of optimality for dynamic networks. Here is the assumption:

Suppose that in a dynamic network, a legal path P from s to t with a minimum length

passes through vertex u. Furthermore let maxiCON(u) denote the non-zero

maximum value that the CON function gives for any connection at u, and let A(u)

denote the length of the minimum path from s to u. Then from the partial paths from

s to u which have a length which is at least A(u) and less than ,1(u) + maxiCON(u), at

least one partial path is part of a complete path from s to t with a minimum length.

For the proof, suppose the contrary: there exists a path with a minimum length:

	

P opt = 	ej, u, ei+1,..., t.

55

We divide the path into two partial paths: 	 For which,

Ps, u = 	u ; Pu, t = u, 	t. 	 1(Palt) = l(PA) + CON(u, ek, ei+i) + 1(Pu,

Clearly, 	 Since,

1(1) opt) = 1(Ps,u) + CON(u, ej, ei+i) + /(Pu, t), 	 l(PA) + CON(u, ek, ei+i) + l(Pu,t) s 1(Ps, u) + CON(u, ej, ej+i) + l(Pu,t),

Suppose that for the length of the partial path 1(Ps,u) %(u) + maxiCON(u), and
there does not exist a path with a minimum length for which the length of the partial
path to u is within the maxiCON interval.

We know that

1(Ps, u) A.(u) + maxiCON(u).

Suppose that the partial path which gave u its label A is:

PZ = 	ek, u.

Since by definition l(P2) = A(u), we know that

l(PA) + maxiCON(u) s 1(Ps,u).

By the definition of maxiCON we know that

CON(u, ek, ei+i) < maxiCON(u).

So,

1(PA) + CON(u, ek, ej+i) < 1(Ps,u),

then surely

l(PA) + CON(u, ek, ej+i) < l(Ps,u) + CON(u,

But then it is possible to construct the following complete path

Palt = 	ek, u, +14_, t.

We get

/(Pait) < /(Popt).

Since /(Popt) is minimum, it must be that

1(Palt) = /(Popt).

So, the length of this new path Palt must be minimum while the length of its partial
path to u is less then A (u) + maxiCON(u). Which is a contradiction.

7.3.2. The correctness of the algorithm

For the correctness of the algorithm we proof that when in step (3) of the
algorithm, a vertex ui is the end vertex of a partial path for the first time, then we
have found a path of minimum length from s to

We remark first that, since any path but the zero-length path to s is constructed
in step (5) of the algorithm, the first time we find a partial path in step (3), arriving
at a vertex u s, its length must be equal to A(u).

The first time that we reach step (3), we know that the only path in F is the
zero-length path to s. Evidently, its length is minimum.

Suppose at the kth time that we reach step (3), for the first time we find a partial
path arriving at u, say the path

Pu = 	ej, u, with a length of A(u).

Now suppose there exists another partial path from s to u with a length less than
A(u), say the path

Palt = 	ep-1, v, ep, u, with a length /(Pait).

56 	 57

There are two possibilities: either the vertex v has already been the end vertex of a
partial path in step (3) or it has not been. We examine both possibilities in turn:

(1) If v has been the end vertex of a partial path in step (3), then there are again two
possibilities: either A(v) + maxiCON(v) < A(u) or A(v) + maxiCON(v) A(u).

If A(v) + maxiCON(v) < A(u), then any path

Pv = s,..., eq, V,

with a length less than A(v) + maxiCON(v), must have been selected from F before
the path P. And by the principle of optimality for dynamic networks, one of those
paths could have been used to construct the path

7.33. Dynamic generation of vertices

As with the algorithm for searching a discrete dynamic network, what the
algorithm does conceptually speaking, is dynamically generating a vertex for each
arriving edge. The edge connecting the vertex to departing edges is (implicitly)
represented by the connection cost function CON. In the algorithm, only those
vertices are generated, which represent arriving edges which may be of interest for
an optimal solution.

Pv,. = s,..., eq, v, ep, u.

So, we would have found a path with a length of L(Pait) then.

If A(v) + maxiCON(v) ?:. A(u), then since it must be true that l(Pv) < A(u), the
length of the partial path

Ps, v = s,..., ep-1, v

must satisfy

l(Ps,v) < A(u).

So, Ps, v must have been selected from F in step (3) before the path Pu. Consequently,
in the following steps this path would have been used to construct the path Pait.

(2) Now consider the case that v has not yet been the end vertex of a partial path in
step (3). Then either the label of v is greater than or equal to the label of u, or it is
smaller.

If the label of v is greater than or equal to the label of u, then the path Pait cannot
possibly have smaller length than 2(u).

If the label of v is smaller than the label of u, then the partial path which gave v
its label must have been selected from F before Pti , which is a contradiction.

58 	 59

8. Space Reduction Method

When searching, it may often prove to be more efficient to first reduce the size
of the search space and then to search that reduced space, instead of just searching
the entire, initial search space. The gain will be increased if the search space will be
searched several times, perhaps to find solutions with different characteristics.
There is an obvious danger: when cutting the search space, we must be careful not to
eliminate the optimal solutions to the original problem, or more generally, the
interesting solutions to this problem. We describe the Space Reduction Method
SRM, which reduces a search space without losing optimal solutions. SRM is
particularly applicable to searching graphs in which pairs of vertices are connected
by several parallel edges. SRM is independent of the search method used. We shall
show how it can be used on a railway service network, an example of a discrete
(dynamic) network. This chapter is largely similar to [Si, 1991].

8.1. Domains of application

SRM can be applied to any domain which can be represented by a graph in
which often several parallel edges occur. A transportation service network,
represented by a discrete network (or possibly a discrete dynamic network), is an
example of such a domain. The stops are the vertices of the network, while the edges
are particular transportation services linking two vertices. For example, the vertices
may be the stations Utrecht CS and Woerden, the edges the trains connecting these
stations as in fig 8.1 (a small excerpt of the 1989-1990 Dutch time-tables). In fig. 8.1,
foot-note (1) means that a train does not run on Saturdays, Sundays and public

holidays, December 27th, 28th, and 29th, April 13th, and May 25th. The "two hammers"
sign means that a train runs on weekdays and Saturdays only. An encircled A means
that a train runs on weekdays only, a t means that a train runs on Sundays and public
holidays only. A bus service network and an air service network are similar to a
railway service network.

60
	

61

13b
9922 9824

5535

8 40 	9103
8 46 	I
852 	913

13b 98201 19920 99201 9822
5531 5333 	 5533

9814 9916 19918 9816 9818 19018 9918
98101 19912
5323 5325

98121 13512
5327

km treinnummer 9806 9910 9912 19012 9914 9814 5529
5527 5329

X 7 06
7 12
7 18

UC X 702
VI X
Wo X 7

I
 12

Wo
Bo
AR
AR
LL
Le

Le
HC

5 7 11 X 7 29
X 7 35
X 7 41

X 7 32

X 71 44

7 36
7 42
748

8 03 	 8 10 	8133
8 16 	I

8 13 	 8 22 	8 43
t 701
t 7 07
t 712

X I
X 7 21

Utrecht CS
Vleuten
Woerden

5 17 5 37
5 43
5 49

5 57
6 03
6 09

JO 61 48
f.6. I
® 6 58

I 0
7

16

X 615
621
6 27

X
X 6

I
 20

X 6 30

6 50
6 56
7 02 5 27 7 19

7 28
7 34

7 49
7 59
8 05

8 22
8 29
8 35

8 52
8 59
9 05

Woerden
Bodegraven
Alphen a/d Rijn 	A

16
27
35

5 49
5 57
6 03

6 27
6 34
6 40

7 02
7 12
7 18 7 52

8 00
8 06

7 37
7 45

X 7 50

8 06
8 14
8 19

11 8 22
11 8 30
El 835

8 36
8 44
8 49

9 06
9 14
9 19

35
50
50

6 26
la 6 35
PI 6 40

11 7 05
iii 7 13
1:1 7 18

Alphen a/d Rijn
Leiden Lammenschans
Leiden 	 A

6 04
612
617

6 47
6 55

X 7 00

7 21
7 29
7 34 801

8 78
8 11 8 32 8 48 9 02 9 32

Leiden
Den Haag CS 	A

6 22
04) 6 38

7 16 X 7 26 6 48 8 26 7 49 8 48 9 05 9 18 9 48
7 33 7 04 X 7 42 8 05

13 b > vervolg >
1

9934 98361 9936
5547

98441 99441 9846
5555 	 5557

99461 9838 9938 9840 9940
5551

9842 9942
99241

9826 1
 99261 9828

5539 99281
 9830

5541
km treinnummer 9930 9832 9932 9834

5545
5549 5553

5543
11
11
11

40
46
52

12
I

12

03

13

12
12
12

10
16
22

12
I

12

33

43

12
12
12

40
46
52

13
I

13

03

13

13
13
13

10
16
22

13
I

13

33

43

13
13
13

40
46
52

14
I

14

03

13

14
14
14

10
16
22

14
I

14

33

43

14
14
14

40
46
52

11
11
12

52
59
05

12
12
12

22
29
35

12
12
13

52
59
05

13
13
13

22
29
35

13
13
14

52
59
05

14
14
14

22
29
35

14
14
15

52
59
05

12
12
12

06
14
19

12
12
12

36
44
49

13
13
13

06
14
19

13
13
13

36
44
49

14
14
14

06
14
19

14
14
14

36
44
49

15
15
15

06
14
19

UC
VI
Wo
Wo
Bo
AR
AR
LL
Le
Le
HC

0
7

16

Utrecht CS
Vleuten
Woerden

9 10
9 16
9 22

9 33 9 40
9 46
9 52

10 03 10 09
10 16
10 22

10 40
10 46
10 52

10 33 11 03 11 10
11 16
11 22

11 33

10113 11 113 A 9 43 10 43 11 43
Woerden
Bodeg raven
Alphen a/d Rijn 	A
Alphen a/d Rijn
Leiden Lammenschans
Leiden 	 A
Leiden
Den Haag CS 	A

16
27
35

9 22
9 29
9 35

9 52
9 59

10 05

10 22
10 29
10 35

10 52
10 59
11 05

11 22
11 29
11 35

35
50
50

9 36
944
9 49

10 06
10 14
10 19

10 36
10 44
10 49

11 06
11 14
11 19

11 36
11 44
11 49 13 02 13 32 14 02 14 32 15 02

10 02 10 32 12 48 11 32 11 02 12 02 13 18 13 48 14 18 14 48 15 18
10 18 10 48 11 48 11 18 12 18

13 b > vervolg >
1

199561
99561

 98581 19958
5569 5371

9856
5369

17 03

9960 9862
5573

9962 98641
55751

9958 9860 9964 9866
5577

19 10 19 33

19 43

98541 19954
5565 5367

99541 km treinnummer 9848 9948 9850
5559 	 5561

9952 9950
5563

19952 9852
5365

5571
55671

UC
VI
Wo
Wo
Bo
AR
AR
LL
Le
Le
HC

17 10
17 16
17 22

17 33 17 40
17 46
17 52

18 03 	18 10
18 16

18 13 	18 22

18 33 18 40
18 46

1 	18 52

19 03
16 03 	16 10 	16 33

16 16 	I
16 13 	16 22 	16 43

17113
Utrecht CS
Vleuten
Woerden

171 43
0
7

16

15 03 15 10
15 16
15 22

15 33 15 40
15 46
15 52

16 40
16 46
16 52

18143 19113
19 16
19 22

15113 151 43 A 17 22
17 29
17 35

17 52
17 59
18 05

18 22
18 29
18 35

18 52
18 59
19 05

19 22
19 29
19 35

Woerden
Bodegraven
Alphen a/d Rijn 	A

16
27
35

15 22
15 29
15 35

15 52
15 59
16 05

16 22
16 29
16 35

16 52
16 59
17 05 1117 22 17 36

17 44
17 49

U17 52 18 06
18 14
18 19

18 36
18 44
18 49

19 06
19 14
19 19

19 36
19 44
19 49

la I
017 33

Alphen a/d Rijn
Leiden Lammenschans
Leiden 	 A
Leiden
Den Haag CS 	A

35
50
50

15 36
15 44
15 49

lil I
01803

16 06
16 14
16 19

016 22 111652 16 36
16 44
16 49

17 06
17 14
17 19

ill
1:116 33

iii
1117 03 17 48 18 02 18 18 18 32 19 02 19 32 20 02

15 32 16 02 16 48 17 02 18 05 16 32 17 18 17 32 18 18 78 35 18 48 19 18 19 48 20 18
15 48 16 18 17 05 76 48 17 18 17 35 17 48

13 b > vervolg > 9976 9878
5589

9978 4089
5097

9880 9980 9882
5591 	 5593

9984
km treinnummer 9876

5587
9966 9868 9872 9968 9870

5581
9972 9874 9970 9974

5579 5583 5585 UC
VI
Wo
Wo
Bo
AR
AR
LL
Le
Le
HC

22 10
22 16
22 22

22 33 22 40
22 46
22 52

23 03 23 10
23 16
23 22

23 33
23 39
23 45

0 07
0 13
0 19

0 22
0 28
0 35

Utrecht CS
Vleuten
Woerden

19 40
19 46
19 52

0
7

16

20 03 20 10
20 16
20 22

20 33 20 40
20 46
20 52

21 03 21 10
21 16
21 22

21 33 21 40
21 46
21 52

22 03
22 43 23 13

A 20 13 20 43 21 13 21 43 22 13 22 22
22 29
22 35

22 52
22 59
23 05

23 22
23 29
23 35

0 19
0 26
0 32

16
27
35

Woerden
Bodegraven
Alphen a/d Rijn 	A
Alphen a/d Rijn
Leiden Lammenschans
Leiden 	 A
Leiden
Den Haag CS 	A

19 52
19 59
20 05

20 22
20 29
20 35

20 52
20 59
21 05

21 22
21 29
21 35

21 52
21 59
22 05 22 36

22 44
22 49

23 06
23 14
23 19

23 37
23 45
23 50

0 38
0 46
0 51

35
50
50

20 06
20 14
20 19

20 36
20 44
20 49

21 06
21 14
21 19

21 36
21 44
21 49

22 06
22 14
22 19 23 02 23 32 0 02 1 02

23 18 20 32 21 02 23 48 21 32 22 02 22 32 0 18 1 22 < einde <
20 49 21 18 21 48 22 18 22 48

Fig. 8.1 An excerpt from the 1989 - 1990 Dutch time-tables.

62 63

8.2. The algorithm for SRM

Suppose we want to search a certain discrete (dynamic) network for an optimal
path from the source vertex s to the terminating vertex t. The network may be large
because there are many vertices, or because many parallel edges occur. In these
cases we may want to use SRM to speed up search. In SRM we first search an
abstracted version of the network in order to determine which vertices lie on paths
which can result in optimal solutions in the "real" network. The steps in SRM are the
following:

(1) { Section 8.3.1: The Idealized Skeleton Graph ISG } The discrete network is
transformed into its Idealized Skeleton Graph, ISG. Effectively, the Idealized
Skeleton Graph is a weighted directed graph in which only a shortest of the
(parallel) edges joining two vertices in the discrete network (together with its
length) is present. The information about the start and end values of edges is not
kept.

(2) { Section 8.3.2: The Idealized Solution IS } We search for an optimal solution IS
from s to t in ISG. Let the length of this optimal path be l(IS).

(3) { Section 8.3.3: Loosening the solution in ISG } In ISG, we find all vertices which
are on paths joining s and t, of length less than (1 + p) * l(IS), where p 0. The
set of these vertices is V': the reduced set of vertices. Note that s and t are in V.

(4) { Section 8.3.4: The Reduced Graph G' } The set of edges E is reduced to E',
which contains those edges from E which join vertices from V'. We thereby
construct the reduced graph G' = (V , E').

(5) { Section 8.3.5: The search in the Reduced Graph G': first pass } We search for
the optimal solution from s to t in G'. Let its length be (1 + q) * l(IS). Note that
q 0. If no solution is found, SRM has failed to define a feasible reduced graph,
and we may have to resort to searching the entire graph G.

(6) { Section 8.3.6: Verification of optimality } If q p, we have found an optimal
solution.

(7) { Section 8.3.7: Repair: second pass } Otherwise, if q > p, we may, or may not. To
verify and eventually find an optimal solution, we replace p by q and go back to
step (3). We then obtain a (possibly new) set of vertices V' 2 V', and a new set
of edges E" 2 E'. When searching the corresponding graph G" = (V", E"), the
solution found in step (5) will definitely be optimal.

8.3. The different steps in SRM

We now describe and illustrate each step of the space reduction method.

8.3.1. The Idealized Skeleton Graph ISG

In this step, throughout G we replace all the edges from E joining two vertices
(the parallel edges), by one single edge which has the same length as the shortest of
the parallel edges (if there exists one edge only, this edge is replaced by an edge with
the same length). In this way we create a new set of edges EISG, and define the
Idealized Skeleton Graph ISG = (V, EISG). Here is the algorithm to create EISG:

Consider a discrete network G = E), where Vis the set of vertices and E the
set of directed edges. Each edge e from E has a start value start(e) and an end value
end(e), with start(e) < end(e). We shall construct the Idealized Skeleton Graph ISG
= (V, EISG).

(1) EISG 4 0

(2) For each edge e: u --> v in E:
If there does not exist an edge e' in EISG such that e': u --> v ,

or if it does exist and end(e) — start(e) < 1(e').
Then create an edge etsG: u -> v , 1(eisG) end(e) — start(e) ,

EISG F EISG {eISG}.

In our example of fig. 8.1, the 37 edges (directly) connecting Utrecht CS and
Woerden in the discrete network representing this time-table, are replaced by one
edge with a length of 10 in ISG. It is not important to know which edge in the discrete
network induced the edge in ISG, nor the exact start and end values of this edge, nor
the fact that there may also exist a longer edge (in our example an edge with length
12, representing train 19018 departing at 7:32). We only need to know that there
exists at least one edge connecting Utrecht CS and Woerden, with a length of 10, and
no shorter ones.

Note that 1 EtsG1 	1E1; the vertices in G and ISG are are the same. The
Idealized Skeleton Graph is built only once for a fixed network. Also note that ISG
is a weighted, directed graph whose edges have a non-negative length.

8.3.2. The Idealized Solution

In ISG we search for an optimal path from s to t. We call a solution to this
problem the Idealized Solution. Since ISG is a directed, weighted graph, we can use
any suitable graph search algorithm, for instance Dijkstra's algorithm, see [Di, 1959].
Let the Idealized Solution be the path IS, with length l(IS). Note that the solution
represented by the path in ISO may not be realizable in reality (i.e. in G). In our
example of fig. 8.1, if the Idealized Solution includes the edge from Utrecht CS to
Woerden, the underlying assumption is that we travel from Utrecht CS to Woerden

64 	 65

by a direct train, taking 10 minutes. However, if we would arrive at Utrecht CS at
10:05, we just missed the 10:03 direct train and we would take the 10:09 stopping
train, taking 13 minutes for the trip. Note that this last train is represented in ISG by
two edges: one from Utrecht to Vleuten with length 6 (induced by, for example train
9910), and one from Vleuten to Woerden with length 5 (induced by train 9814). The
Idealized Solution does not take into account the exact times of departure or arrival
(start and end values in a discrete network), time margins necessary to change trains
(the CONnection function in a discrete dynamic network), nor other restrictions
(such as foot-notes of trains); it is the absolutely best solution one could hope for,
and is often not realizable.

8.3.3. Loosening the solution in ISG

Since the Idealized Solution is usually not realizable in G, we loosen it: we
consider all solutions in ISG with a length larger than /(/S), but smaller than Liimit,
where:

Liimit = (1 + p) * l(IS), wherep 0.

For example, we might take p = 0.5. The choice of the size of p will be discussed
below. When we compute in ISG all solutions of length at most Liimit, we gather the
vertices on the paths representing these solutions in the set r: the reduced set of
vertices.

For the computation of these solutions, we need to know all paths from s to t, of
length at most Liimit. Explicitly constructing all these paths may be very time
consuming, since these paths need not be disjunct.

There is a way to find all the vertices we need without explicitly constructing all
possible paths. We first conduct a search from the starting vertex s to determine all
vertices u for which there exists path from s to u with length less than or equal to
Liimit. For instance, we can use Dijkstra's algorithm, stopping when the label of the
vertex that is made permanent in step (3) (see chapter 3) is greater than Liimit. Then
we conduct a backward search from the terminating vertex t to determine all vertices
v for which there exists a path from v to t with length less than or equal to Liimit. In
this second search we only need to consider those vertices which were made
permanent in the search from s. For each vertex u that was not made permanent in
the first search, there does not exist a path from s to u with a length less than or equal
to Liimit. So there cannot exist such a path from s to t via u. If, in the algorithm, we
initialize 6s(u) (the length of the shortest path from the source vertex s to the vertex
u) to co for every vertex u, then every vertex that was made permanent in the first
pass, has a Os value of at most Liimit. So, of each vertex v that was made permanent in

the second search (and thus in both searches), we know the length of a shortest path

from the source vertex s to v, 6s(v), and the length of a shortest path from v to the

terminating vertex t,6t(v). Then we select those vertices v for which 6s(v) + 60) 5

Limit. Clearly, only those vertices lie on a path from s to t with a length less than or

equal to Liim it. Note, however, that these paths need not be simple paths! Therefore,
the resulting search space may contain dead-end branches. Here is the complete

algorithm:

Pass 1:

(1) 6s(s) F 0 and for all v E V, v s, Os(v) oe .
(2)T.,-V,F4-{s}.
(3) If F is empty then stop. Otherwise, let u be a vertex in F for which 6s(u) is

minimum
(4) If Os(u) > Limit, stop.
(5) For every edge e : u v,

if v E T and Os(v) > 6s(u) + l(e)
then Os(v) 6s(u) + 1(e) and F F + {v} .

(6) T T — {u}, F F — { u} and go to step (3).

Pass 2:

(1) Ot(t) <- 0 and for all v E V, v t, Ot(v) 4- 00 . V' 4- O.
(2)T4--V, F4-{t}.
(3) If F is empty then stop. Otherwise, let u be a vertex in F for which Ot(u) is

minimum.
(4) If Ot(u) > Liimit, stop.
(5) If Os(u) + Ot(u) Liimit then V' <- V' + { u}.

(6) For every edge e : v u,
if v E T and (5,(v) Liimit and Ot(v) > Ot(u) + 1(e)

then at(v) 4- 6t(u) + 1(e) and F 4- F + { v} .

(7)T4-T— {u}, F4-F— { u} and go to step (3).

8.3.4. The Reduced Graph G'

We now construct the Reduced Graph G' = (V', E'). The collection of vertices

of G' is the set 1/' as defined in the previous section. We construct the reduced set of

66 	 67

edges E' by taking the edges from E, which join vertices from V'. An edge from E is
placed in E' iff both its start and end vertex are in V':

(1)E'4-ø.
(2) For every edge e: u -› v from E:

If u E V and v E V
Then E' E' + { el .

In our example of fig. 8.1, if we were looking for optimal solutions from Utrecht
CS to Bodegraven, V' would surely include Woerden, but not Maastricht (Maastricht
is typically 178 kilometers and 2 hours from Utrecht CS and 205 kilometers and 2:30
hrs from Bodegraven). In E' we would have all trains connecting any two stations in
V'. Obviously, the network G' is a restriction of G "around" the Idealized Solution.
So, the graph G' is of the same type as G, in our case a discrete (dynamic) network.
It is likely that the actual best solution (in G) will be in G'. In addition, G' will often
be very much smaller than G.

8.3.5. The search in the Reduced Graph G': first pass

In G' we search for an optimal path from s to t. Let this solution be Tent.Sol.
(Tentative Solution). This search can be carried out by using any particular search
technique suitable for the type of graph (of G' and G), as long as it guarantees an
optimal solution. In our case we could use the algorithm from chapter 4 (for a
discrete network) or 6 (for a discrete dynamic network). If no solution is found, the
Idealized Solution was based on information which was (far) too unrealistic, and
cannot be used to define a feasible reduced graph, and we may have to resort to
searching the entire graph G. In this case SRM is not successful in reducing the size
of the search space.

8.3.6. Verification of Optimality

Let the length of Tent.Sol. be (1 + q) * 1(IS), where obviously q 0. Remember
that Tent.SoL is a "real" solution, i.e. it describes a path in G', and thus in G, from s to
t. However, although the path is optimal in G', we do not yet know whether it is also
optimal in G.

If q p, then Tent.SoL is also an optimal solution in G, i.e. by searching only in
the reduced space G', we still found an optimal solution for the search in the entire
space G, as we now shall prove by contradiction. Let us assume that there is in G a
better solution:

Sol2 : s = u0 -> u1 u2 -> u3 un-1 un = t

which is not entirely in G', i.e.

3 i, 0 < i < n, such that u, G'.

Let the length of Sol2 (which is a better solution than Tent. Sol.) be:

l(So12) = (1 + r) * l(IS), where 0 :5_r<q5..p.

Now let us consider the corresponding path of Sol2 in ISG:

So/2HG : s = u0 -> u1 142 —> U3 ... 	—> un = t.

Since in ISG every edge joining two vertices is replaced by an edge with the length of
the shortest edge joining the two vertices, we know that

kuj uj+i)tsG 5- kuj -) uji-i)G with 0 < j < n.

So,

l(Sol2IsG) Lc. 1(Sol2)

But then

1(Sol2IsG) < l(So12) = (1 + r) * l(IS) < (1 + q) * 1(IS) (l+p) * l(IS) =

So, the length of the corresponding path in ISG is less than ',limit. Therefore all the

vertices on the path So/2isG (and thus on the path So12), including ui, should have

been in G', contradicting our assumption.

If q > p, then G' may have been too "small", and a better solution may exist

outside G', although this is not necessarily the case. Think of the case where we take
p = 0, and keep in G' only the vertices on paths representing the Idealized Solutions
in ISG. The length of the actual solutions in G along these paths will almost surely be

larger than l(IS).

68 	 69

8.3.7. Repair: second pass

In the last case, it is sufficient to setp to q in step (3) and calculate a new, larger
reduced graph G". An optimal solution in G" is now guaranteed to be also an
optimal solution in G, and therefore at worst we only need to cycle once.

Let us justify the last statements: in G" we have all the vertices on paths
representing Idealized Solutions (i.e. paths in ISG) of length (1 + q) * 1(IS) or less.
Assume that the optimal solution in G is:

Opt.Sol. : S = V0 —> V1 V2 —* V3 ... Vm —1 Vm = t.

Its length must be at most the length of (the previously found) Tent. Sol. (which is also
a solution in G), which is (1 + q) * 1(IS). The length of the corresponding path in ISG
must be at most the "real" length (the length of the path in G), which is (1 + q) *
1(IS), and by construction all the vertices v0, V2,..., vm are in G". So, the value qn,„ in
the second cycle must be at most q and the algorithm will stop.

8.4. The choice of the coefficient p

Let us consider the coefficient p in step (3) of SRM. In order to choose a value
for p, we could use some heuristic taking into account some knowledge we have
about the network. For instance we might know that the length of a real solution will
be at most 140 percent of the length of its idealized solution, so we could set p to
0.40.

Ifp is chosen too small, SRM will almost surely cycle. This single repetition may
prove costly: if q is large, i.e. if the Idealized Solution is very much better than the
"real" solution in G', the graph G" may not be much smaller than G. When p is
chosen too large, the reduced set of vertices V' will be large and little benefit will
accrue from the use of SRM.

It is not necessarily optimal to choose p so large that the single cycling of SRM
never occurs. A smaller value of p could prevent cycling in most cases, and in these
cases the search space could be considerably reduced. With such a smaller value of
p, SRM will cycle only in some of the more extreme problems. Somewhere between
a (too) largep and a (too) smallp lies an optimalp, which depends on the graph, the
actual cost of searching it, and the distribution of search requests. Such an optimalp
can be determined empirically, after gathering enough information about a
particular application, and assuming that future usage of the system will be
essentially similar to past usage.

70

Another approach is to setp to 0. This way only the vertices on the path of the
Idealized Solution will be in G'. When we search G', we shall only find solutions
along the idealized path. Effectively, we traverse the idealized path (from ISG) in G.
The cost of traversing this path only will obviously be small, however, the resulting
solution may be bad. It will be very probable that in step (6) q > p. Only if the

Idealized Solution is totally realizable in G willp = q. In the second cyclep will have
the value of a real solution along the idealized path. The advantage will be a smaller

search space (a smaller G') if the real optimal solution is likely to be along the

idealized path. The value of p in the second pass is determined using knowledge
about a route which has some chance of being near to optimal. The disadvantage of
this approach is that we shall almost always have to cycle once.

8.5. Application

In an application, the Idealized Skeleton Graph need to be built only once for a
given network, independently of the problem at hand. SRM reduces the size of the
graph to be searched specifically for each problem, and may result in an increased
performance. SRM appears particularly useful when searching large graphs where
the search for a solution can often be confined "near" the Idealized Solution, i.e.
much of the graph need never be searched. The benefits of SRM increase if a
network is searched several times, because not only optimal but also near optimal
solutions are of interest, or because there are several criteria for optimality. Since
SRM reduces the size of the space to be searched, each of the solutions of interest
will be found more efficiently than if the entire initial search space had been
searched. The sum of the savings brought when finding each solution of interest may
be very much larger than the cost of applying SRM. Results are given in chapter 14.

71

9. Heuristic Search

In order to further improve search efficiency we can make use of heuristics. One
way to build an heuristic search algorithm is to make use of an heuristic function
which gives for every vertex an estimate of the distance remaining to the goal vertex.
A well-known algorithm for finding a minimum length path using heuristic estimates
is A* (see [Ha, 1968]). Some generalizations of this algorithm have been elaborated
in [Po, 1970], [Ha, 1974], [Me, 1984] and [Pe, 1979].

9.1. The A* search algorithm

We shall first give a definition of the A* search algorithm. We shall use a
notation similar to the notation we used previously.

Consider a finite directed graph (K. E), where V is the set of vertices and E the
set of directed edges joining two vertices from V. Each edge e from E has a length
1(e) 0. The two special vertices s and t of the graph are the starting and terminating
vertices. We want to find a shortest directed path from s to t, where the length of a
path is the sum of the lengths of its edges. The evaluation function f(v) is an estimate
of the length of a minimum length path constrained to go through the vertex v. The
function f(v) is composed of two parts: A(v) and h(v). A(v), the label of the vertex v, is
the length of the best known path from s to v. h(v), the heuristic, is an estimate of the
length of a minimum path from v to the goal vertex; we assume that h(t) = 0 for all
heuristic functions h. The value of A(v) is determined during the propagation of the
algorithm. The value of h(v) is given initially for every vertex. The evaluation
function f(v) is composed as follows:

f(v) = .t(v) + h(v).

We now give the A* search algorithm.

(1)),(s) <- 0 and f(s) <- h(s). For all v E V, v # s, A(v) 4- 00

(2) F { s} .

72
	

73

(3) If F is empty then stop, no path could be found. Otherwise, let u be a vertex in F
for which f(u) is minimum.

(4) If u = t, stop, a path is found.
(5) For every edge e : u -> v,

if A(v) > A.(u) + 1(e),
then A(v) <- A(u) + l(e) and f(v) 4- A.(v) + h(v) and F <- F + { v} .

(6) F 4- F - { u} and go to step (3).

If in step (3), there are ties, then it makes sense to work first on the vertex which
is estimated closest to the goal vertex. So, the vertex with the smallest value for h(v)
should be chosen. Note that this way, the goal vertex, which obviously has an
estimate of 0, will always be favoured in case of ties.

Note that the only difference between the A* algorithm, and the improved
Dijkstra algorithm described in chapter 3, is the introduction of the heuristic
estimate h(v) and the absence of the collection T. The collection T cannot be used
(in step (5)), because in the basic A* algorithm, a vertex may become the branching
vertex u in step (3) multiple times, whereas in Dijkstra's algorithm this happened at
most once for every vertex. We shall later see under which condition this can be
avoided.

9.2. Admissibility of A*

It has been proven (see [Ha, 1968] or [Ni, 1980]) that if for every vertex v, h(v)
is a lower bound (an underestimate) of the actual length of a minimum path from v
to the goal vertex, then the algorithm A* is admissible, i.e. it always finds an optimal
path. This is easily seen by the fact that the real length of a path cannot be less than
an underestimate of its length. Once a complete path has been found in step (4), the
length of this path is real, it contains no estimate. So, if all other (incomplete) paths
have an underestimated length which is higher than the actual length of the
(complete) path we have found, then none of the completed paths developed out of
the incomplete paths, can have an actual length which is lower.

9.3. Consistent heuristics

Earlier we said that a vertex could become the branching vertex multiple times
in the A* algorithm. For an example, consider the graph in example 9.1. In this
example the estimates (the h value of a vertex) are encircled. By inspection, we note
that in this example, all estimates are in fact underestimates. Suppose we want to
find a minimum length path from s to t.

Fig. 9.1.

The first vertex to become the branching vertex is s. From s, v 1 is labeled 4 and

f(vi) becomes 5. A(v0) becomes 2 and f(v0) becomes 6. Then v1 becomes the
branching vertex since it has the lowest evaluation value. t is labeled 8 and f(t)
becomes 8. v0 does not get relabeled: h(v0) + A(v0) via v1 is 4 + 5 = 9, which is higher
than the previous value of 6. Then v0 becomes the branching vertex. From v0, v1 does
get relabeled to 3 (even though it had been the branching vertex once already) and
its evaluation value becomes 4. Consequently v1 is put in F again and it becomes the
next branching vertex. So, even though the heuristic estimates are underestimates, a
vertex can become the branching vertex multiple times.

A vertex can become the branching vertex multiple times when the heuristic
evaluation function (the function which is composed of the label and the heuristic
estimate) is not monotonically non-decreasing along the path from s to t. If an
heuristic evaluation function is monotonically non-decreasing along any path in the
graph, then the heuristic is called monotone or consistent (see [Ni, 1980]). A
monotone heuristic evaluation function translates into the following consistency
assumption:

Consider an edge e : u -> I/ , then

h(u) - h(v) 5 l(e).

In example 9.1, the consistency assumption is not valid for the edge s -> v1 and
for the edge v0 -> vi. The estimate for vertex v1 is not consistent with the estimates of
s and v0, considering the lengths of the edges s -> v1 and v0 -> v1 respectively.

74 	 75

It has been proven ([Ni, 1980]) that given an heuristic evaluation function, if the
consistency assumption holds for all edges e of a graph, then A* using this function
will never make a vertex the branching vertex more than once. A vertex that has been
a branching vertex need never be tried for relabeling again. The label of the vertex
becomes permanent in step (3).

9.4. A* as a modified Dijkstra algorithm

If we make sure that an heuristic function gives an underestimate, and
moreover, if the heuristic function is consistent, then the only difference between A*
and the improved Dijkstra algorithm presented in chapter 3, is the use of the
heuristic function in the evaluation of vertices in step (3).

9.5. Using the results from SRM in A*

As a result of the determination of the search space in SRM (the determination
of the graph G'), for each vertex v in the search space we have an estimate of its
distance from the source vertex (6,(v)) , and an estimate of the distance remaining to
the goal vertex (6g(v)). If we make sure that these estimates are underestimates, and
that these estimates are consistent, then we may use these estimates in the
evaluation step of the algorithms to search discrete and discrete dynamic networks
(see chapters 4 and 6).

It is easily seen that the estimates obtained from SRM are underestimates by the
fact that in the Idealized Skeleton Graph (see chapter 8), all parallel edges are
replaced by one edge with a length corresponding to the length of the shortest of the
parallel edges. So, when using one of the parallel edges in the real graph, its length
is at least the length of its representative edge in ISG. Since the estimates are
determined by searching for optimal paths in ISG, these estimates must be
underestimates of the real optimal paths.

The fact that the estimates from SRM are consistent is proven by contradiction.
Suppose that for some edge e: u --) v (e E E'), with u and v part of the search space
(the reduced graph), the consistency assumption does not hold, i.e. :

h(u) — h(v) > 1(e) 	(1).

Where h(u) and h(v) are the estimates of the distance remaining to the goal vertex t
from u and v respectively. These estimates were found by searching ISG for optimal
paths (Os(u), dg(u)). So, we know that there exists a path in ISG from u to t:

Pu, t = 	t, with 1(Pu, t) = h(u) minimum

Similarly, there exists a path in ISG from v to t:

Pv, t = 	t, with l(Pv, t) = h(v) minimum

Using the representative of e in ISG, e': u --> v, and using Pv, t it is then possible to
construct the following path from u to t in ISG:

Pot = u, 	t.

By the definition of ISG we know that

l(e') 5_ 1(e) 	(2).

Obviously,

/(Popt) = l(Pv, t) + l(e').

By (2) and since l(Pv,t) = h(v) we get:

/(Popt) = h(v) + 1(e') < h(v) + 1(e).

By (1) we know that

h(v) + l(e) < h(u).

But then

l(1'014 < h(v) + 1(e) < h(u).

So, we have constructed a path from u to t in ISG for which the length is less that
h(u). Since h(u) is minimum, this is a contradiction. So it must be that h(u) -

h(v) l(e).

9.6. Using heuristics in DYNET: DYNET*

Now that we have shown that the estimates that we get from SRM are consistent
and in fact underestimates, we can easily adapt our DYNET algorithm for searching
a discrete dynamic network to include heuristic estimates. All we need to do is to

76 	 77

change the evaluation in step (3). Furthermore, only the vertices that were
determined to be in the search space using SRM, are considered in the search. For a
detailed description of the other steps of the algorithm, see chapter 6. We shall refer
to this algorithm as the DYNET* algorithm.

Consider a discrete dynamic network consisting of the graph G = (KE) and the
connection cost function CON. The maximum value of CON at a vertex u is
maxiCON(u), which is non-zero. The two special vertices s and t of the network are
the starting and terminating vertices. We want to find a legal path from s to t in our
discrete dynamic network, where the end value of the path is minimum and given
this end value, the start value of the path is maximum and at least Tstart.

Let the collection be the collection of vertices that were determined to be in
the search space using SRM (the reduced set of vertices). Furthermore let 6,(v)
denote the estimate of the distance from s to v, determined using SRM, and let
Ot(v) denote the estimate of the distance from v to t.

Pass 1:

(1)4S) Tstart and for all vEV,v# s, ,l(v) 4- C41 .

Create a partial path P0 consisting of s only, end(P0) 4- Tstart:

For all v E V', w(v, u) = 00 for each neighbour u of v, u E V .
(2) F {P0 }.
(3) Let Pm be a partial path s, e0, 	ei -1, uj in F for which end(Pm) + Mu) is

minimum; if F is empty then stop, no complete path could be found.
(4) If uj = t, stop, Pm is a complete path with an optimal end value.
(5) If end(Pm) <,l(ui) + maxiCON(u).

then for every relevant edge ej : uj -> uo-i; uj-F1 E V' :
if ,l(uj+i) > end(ej)
then yl(uj+i) F end(ej)
if end(ej) < A(u j+i) + maxiCON(u j+i)
then create a partial path Pn = s, e0, 	uj-4, ej-1, uj, ej, uj+1 and

F 4-- F + { Pn} .
if end(ej) < w(uj+i, ui)
then w(uj+i, ui) end(ej).

(6)F 	— {Pm } and go to step (3).

A relevant edge is defined as follows: given a partial path u0,..., 	uj and a
vertex uj+i, then the relevant edges from uj to uj+1 are the edges ej: u j uj+1 for
which the following two ordered conditions hold:

78

(1) start(ej) end(ej-1) + CON(uj, e j _i, ej),
(2) end(ej) < end(emm) + maxiCON(uj+i),

where end(emm) is the minimum end value of any edge satisfying (1).

Pass 2:

(1) ic(t) F A(t) and for all v E V' , v t, K(V) 	.

Create a partial path P0 consisting of t only, start(P0)
(2) F 4-- { P0} .
(3) Let Pm be a partial path up..., uk-i, 	t in F for which start(Pm) — s(uj) is

maximum
(4) If uj = s, stop, Pm is an optimal complete path.
(5) If start(Pm) > K(uj) — maxiCON(u)

then for every relevant edge ej-1 : uj-1 -> uj;
with ui-1 E V and co(uj, uj-1) start(Pm) :

if ic(uj-1) < start(ej-1)
then K(u j-1) start(ej-i)
if start(ej-1) > ic(uj-1) — maxiCON(u j-1)
then create a partial path Pn = uj-1, es-i, 	ek-1, t and

F4-F+ {Pn} .
(6) F F — { Pm} and go to step (3).

A relevant edge is defined as follows: given a partial path up ej, 	uk and a
vertex ui-1, then the relevant edges from uj-1 to u1 are the edges ej-1: uj-1 -> uj for
which the following two ordered conditions hold:

(1) end(ej-1) start(ej) — CON(uj, ej-1,
(2) start(ej-1) > start(emax) — maxiCON(u)-1),

where start(emax) is the maximum start value of any edge satisfying (1).

79

10. Offset Vertices

An excellent way to decrease the amount of search necessary to find an optimal
path in a graph, is to make sure that the graph that is being searched is as small as
possible. In a graph, some categories of vertices need not be considered during
search. In this chapter we describe one such category: the offset vertices. An offset
vertex is a vertex which lies between exactly two other vertices. A path leading to
such a vertex can only be continued to one vertex, and consequently the vertex does
not need to be considered during search if it is neither the starting vertex nor the
terminating vertex. The fewer vertices need to be considered during search, the
faster the search will be. We also describe how offset vertices can be determined in
(directed) graphs and in discrete dynamic networks. Furthermore we describe
adjustments to the search strategies for these graphs, in case the starting or
terminating vertex is an offset vertex.

10.1. Offset vertices

Let us consider the graph in fig. 10.1. If we are searching this graph using, say,
Dijkstra's algorithm, then whenever we arrive at vertex v2, which lies between exactly
two other vertices (v1 and v3), we can only continue our path by going to v3 if we
arrived at v2 from vl, or to vertex v1 if we came from v3. There is no other choice since
continuing the path back to the vertex we came from is obviously useless when we
are searching for an optimal path. Unless v2 is the starting vertex or the terminating
vertex, as soon as we are going from v1 to v2, adding a length of 2, we know for sure
that from v2 we shall continue to v3, adding a length of 3, giving a total of 5 to reach
v3 from vi. Similarly, if we are going from v3 to v2, adding a length of 3, we know for
sure that from v2 we shall continue to vi, adding a length of 2, giving a total of 5 to
reach v1 from v3. So, if v2 is neither the starting vertex nor the terminating vertex,
when searching the graph of fig. 10.1, we can equivalently search the graph of fig.
10.2, which is smaller. The vertex v2 has been removed and has become an offset

vertex. In fig. 10.2, if v2 is the starting vertex or the terminating vertex, we need to
remember that v2 (the offset vertex) is lying between v1 and v3 (the node vertices),

80 	 81

V4

Fig. 10.3. Fig. 10.4.

Vi 	 Vi

V2

V4 V3

V4

Fig. 10.1. 	 Fig. 10.2.

separated by a length of 2 from v1 and by a length of 3 from v3 (the distance offsets).
We shall now define the concepts of offset vertices and distance offsets more
precisely.

10.2. Offset vertices in undirected graphs

We can include offset vertices in the definition of a (weighted), undirected
graph as follows. A graph G with offset vertices is a structure which consists of three
sets and a function:

(1) a set of node vertices Vnode,
(2) a set of offset vertices Voff,
(3) a set of (undirected) edges E,
(4) a non-negative, real-valued function, called the distance offset function DIS,

having two vertices as arguments: one offset vertex and one node vertex.

Each edge e from E is incident to the elements of an unordered pair of node vertices.
Each edge e is assigned a non-negative length 1(e). With each offset vertex v E Voff,
we associate 2 values, yi(v) and y2(v), which denote the node vertices connected to
the offset vertex. The distance offset function DIS specifies the length separating an
offset city and the node cities connected to it.

In the example of fig. 10.2 I7node = {vi, v3, va}, Voff = {V2}, and E = {e12, e3, e4}.
Furthermore:

Yl(V2) = Vi,

y2(V2) = V3,

and

DIS(v2, vi) = DIS(vi, v2) = 2,
DIS(v2, V3) = D1S(V3, V2) = 3.

103. Offset vertices in directed graphs

In a directed graph, the length separating two vertices may depend on the
direction. For example, in fig. 10.3, v2 lies between exactly two other vertices, v1 and

v3, and thus can be made an offset vertex. The length of the edge from v1 to v2 is 3,

whereas the length of the edge from v2 to v1 is 2. So, when we introduce offset
vertices to directed (weighted) graphs, the order of the arguments of the DIS

function becomes important. In fig. 10.4 v2 has been made an offset vertex. The DIS

function becomes:

DIS(vi, v2) = 3,
DIS(v2, vi) = 2,
DIS(v3, v2) = 4,
DIS(v2, V3) = 2.

103.1. Transforming a graph

In this paragraph we describe the steps to transform a directed, weighted graph
into a graph with offset cities, which can be equivalently, but more efficiently
searched for an optimal path.

82 83

e0: u0 -0 v,

v -0
e2: u1 -0 v,
e3: v -0 u0.

e0 	 e1 	 e0

u0 	e3 	 e2 ui u0 	 e3 	 e2
	ui

Fig. 10.5. 	 Fig. 10.6.

First we make the observation that when we are searching for an optimal path in
a graph, it makes no sense to have self-loops and parallel edges. A self-loop takes us
back to the same vertex we came from at an extra cost, which will not give an optimal
path. When parallel edges exist between two vertices, for an optimal path only a
shortest edge of the parallel edges will be used to go from one vertex to the other, so
all but a shortest of the parallel edges connecting a specific pair of vertices can be
dropped. Therefore we may remove all self-loops and parallel edges.

For each vertex, if the number of arriving edges (the in-degree of a vertex
v, din(v)) and the number of departing edges (the out-degree of a vertex v, dout(v)),
are both exactly two, then this vertex lies between exactly two other vertices and we
may make this vertex an offset vertex. Suppose that vertex v lies between u0 and ui
(see fig. 10.5), and that

When we make v an offset vertex, u0 and ui become the node vertices which are
connected to the offset vertex:

yi(v) u0,

y2(v) 4- ui:

We remove e0 and e1 from the graph and replace them by one compound edge from
u0 to ui. The length of this new edge becomes the sum of the lengths of e0 and el:

eQi: u0
l(e0i) 	l(e0) + 1(ei).

84

Similarly, we remove e2 and e3 from the graph and replace them by one compound
edge from ui to u0. The length of this new edge becomes the sum of the lengths of

e2 and e3:

ui -ou0,
l(ei0) 	l(e2) + l(e3).

The (length) information of the separate edges we removed are stored in the DIS

function:

DIS(u0, v) 4- 1(e0),
DIS(v, ui) F-1(ei),
DIS(ui, v) 4- l(e2),
DIS(v, u0) l(e3).

Note that, since we must be able to distinguish between DIS(u0, v) and

DIS(ui, v) (representing the information of edge e0 and e2), u0 and ui must not be the

same vertex! We must not allow new self-loops to occur. Since we already removed
self-loops, we know for sure that v will never be the same vertex as u0 or ui if we do

not allow new self-loops to occur.

It may be, that the vertex v that we have made an offset vertex had already been
made a node vertex for some other offset vertex v.. Since an offset vertex is
connected to exactly two node vertices, and since v is connected to exactly two node
vertices, vo must lie either between u0 and v, or between v and ui. So, either

Yi(vo) = u0 and y2(v = v,

or
yi(vo) = ui and y2(v0) = v.

In the first case (see fig. 10.6), ui replaces v as the node city which is connected to

Vo:

Y2(v.) F ui:

In the second case u0 replaces v as the node city which is connected to v.:

Y2(vo) F u0.

Furthermore we need to change the DIS function to give the distances from v0 to the

new node city to which it is connected instead of v. For the first case:

85

DIS(v., ui) <- DIS(v., v) + DIS(v,
DIS(ui, v.) 4- DISOil,v) DIS(v,

For the second case:

DIS(vo, u0) 4- DIS(vo, v) + DIS(v, u0),
DIS(u0, v.) <- DIS(u0, v) + DIS(v,

10.3.2. The algorithm to transform a directed, weighted graph

We now give a formal definition of the algorithm to transform a directed,
weighted graph into a directed, weighted graph with offset cities:

Consider a finite, directed, weighted graph G = 	E) . We shall construct an
equivalent graph with offset vertices G' = (Vnode, Voff, E', DIS), where Vn.de is the
collection of node vertices, Voff the collection of offset vertices, E' the collection of
directed edges joining two vertices from Vnode, and DIS is the distance offset function
having two arguments: a node vertex and an offset vertex. Each edge e from E' has a
length l(e) 0. Furthermore, with each offset vertex v E Voff, we will associate 2
values, yi(v) and 72(v), which denote the node vertices which are connected to the
offset vertex.

(1) Voff <- 0, Vnode F O.
(2) E' 4- E. Remove from E' all self-loops, and all parallel edges but the shortest

ones.
(3) For each vertex v E V,

if chn(v) = dout(v) = 2 then
Suppose

e0: u0 v,

v
e2: ui 	v,

e3: u0.
if u0 # ul

yi(v) u0 and 72(V)
Voff 4- Voff { V }.
Vnode F Vnode 	UO, ui }.
E' <— E' — { e0, ei, e2, e3 }.

Create an edge e0i: u0 	/(e03) F 1(e0) + l(ei).
Create an edge ei0: ui 	/(e30) F /(e2) + 1(e3).

86

E' 4-- E' + { e0i, ei0 }.
DIS(u0, v) 1(e0),
DIS(v, ui) 1(ei),
DIS(ui, v) <- l(e2),
DIS(v, u0) F l(e3).
if v E Vnode then there exist offset vertices vo for which v was a node

vertex. For each such offset vertex v.:
if 71(v.) = u0 and y2(vo) = v.

then y2(vo) ui,
DIS(v ui) DIS (v 0, v) + DIS(v,
DIS(ui, vo) DIS(ui, v) + DIS(v, vo).

else 72(vo) 4- u0,
DIS(vo, u0) <- DIS (v., v) + DIS(v, u0),
DIS(u0, v0) 4- DIS(u0, v) DIS(v, v.).

Vnode Vnode 	V /.
else Vnode K.& + V }.

else Vnode F Vnode { V }.

10.3.3. Adapting Dijkstra's algorithm to offset vertices

Now that we have defined a graph with offset vertices, and an algorithm to
transform a weighted, directed graph into a graph with offset vertices which can be
searched more efficiently for an optimal path, we adapt a graph search algorithm to
handle such a graph with offset vertices. As a basis we use the improved version of
Dijkstra's algorithm as defined in chapter 3.

As we saw in section 10.1, we only need to consider offset vertices during search
if an offset vertex is either the starting vertex or the terminating vertex. We shall look

at each case in turn.

10.3.3.1. An offset vertex as the starting vertex

In the definition of the improved Dijkstra algorithm (see section 3.1.2.3.) the

starting vertex s is handled in step (1): the starting vertex is labeled with 0 and is put
in the frontier. Since it is the only vertex that is put in the frontier, at step (3) the
starting vertex is selected as the branching vertex and in step (5) all its neighbours
are visited (labeled and put in the frontier). Finally, the starting vertex is removed
from the frontier. If the starting vertex is an offset vertex, we do not label it, but
instead, the node vertices adjacent to the offset vertex are labeled with their
respective distance from the offset vertex. The information of the edges departing

87

from the offset vertex can be recovered by using the y values of the offset vertex to
determine to which node cities it is connected, and by using the DIS function to
determine the length of the connecting edges:

A(yi(s)) DIS(s, yi(s)),
A(y2(s)) DIS(s, y2(s)).

Since a vertex is always removed from the frontier as soon as all of its neighbours
have been visited, we do not bother to actually put the source vertex itself in the
frontier. Instead, after we have labeled its adjacent node vertices, we put those in the
frontier. The offset vertex is temporarily treated as a node vertex by visiting its
adjacent node vertices.

10.33.2. An offset vertex as the terminating vertex

When the terminating vertex t is an offset vertex, it is treated as a node vertex
which is being labeled when one of its adjacent node vertices becomes permanent.
We can recognize a node vertex u adjacent to the offset vertex by comparing it to the
y values of the offset vertex. We can recover the information about the edge
connecting the node vertex and the offset vertex by using the DIS function. With this
information we are able to label the offset vertex:

if u = yi(t) or u = y2(t):
if A(t) > A(u) + DIS(u, t)
then A(t) FA(u) + DIS(u, t)

We do actually have to treat the offset vertex as a node vertex and put it in the
frontier. If we would follow the same scheme as when the starting vertex is an offset
vertex, i.e. label the node vertices with the distance from its neighbours plus the
distance the offset vertex is from the node vertex, then we would get an incorrect
answer in a case like fig. 10.7. From s we label u0 with 5. If we would label u0 with
5 + 4 = 9 and stop when it becomes the branching vertex the next iteration, we
would miss the shorter path via ui. Because we label u0 with a distance greater than
the actual distance, there may be neighbours of u0 which have a smaller actual label
than u0, and could result in a shorter route, if we would label them.

10.3.33. An offset vertex as starting vertex and terminating vertex

When both the starting vertex and the terminating vertex are offset vertices, a
special case arises when they are both adjacent to the same pair of node vertices.
This case must be handled in a separate step. The distance separating the two offset

88

Ut

Fig. 10.7.

vertices must be calculated by going from one offset vertex to the other directly,
without passing a node vertex. The different cases are shown in fig. 10.8:

yi(s) = y 1(0, and y2(s) = y2(t)
DIS(yi(s), s) < DIS(yi(t), t)
A(t) 4-- DIS(yi(t), t) — DIS(yi(s), s)

yi(s) = yi(t), and y2(s) = y2(t)
DIS(yi(s), s) > DIS(yi(t), t)
A(t) <- DIS(y2(t), t) — DIS(y2(s), s)

yi(s) = y2(t), and y2(s) = yi(t)
DIS(yi(s), s) < DIS(y2(t), t)
A(t) DIS(y2(t), t) — DIS(yi(s), s)

yi(s) = y2(t), and y2(s) = yi(t)
DIS(yi(s), s) > DIS(y2(t), t)
A(t) <- DIS(yi(t), t) — DIS(y2(s), s) 	

Fig. 10.8.

We must handle this special case as above. If we calculated the distance by first
going from one offset vertex to one of its adjacent node vertices, and then from the
node vertex to the other offset vertex for example, then the solution would not be
optimal.

10.3.4. The Dijkstra algorithm for searching a graph with offset vertices

We now give a formal definition of Dijkstra's algorithm, adapted to handle an
offset vertex as starting vertex or terminating vertex. An offset vertex as starting

89

yi(s)
	

Y2(s)
■ ■ 	 •
yi(t)
	

t 	Y2(t)

yi(s)
	

y2(s)
• ■

yi(t) 	t
	

y2(t)

yi(s)
	

Y2(s)

Y2(t)
	

t 	yi(t)

yi(s)
	

Y2(s)
■	

y2(t)
	

Y1(0

vertex is handled in step (1). An offset vertex as terminating vertex is handled in step
(6). The special case of both the starting vertex and the terminating vertex as an
offset vertex between the same pair of node vertices is handled in step (2). The other
steps are similar to the original definition of the improved Dijkstra algorithm (for an
explanation of the different steps see chapter 3).

Consider a finite directed weighted graph with offset vertices, G = (Vnode,

Vo ff, E, DIS), where Vnode is the collection of node vertices, Voff the collection of

offset vertices, E the collection of directed edges joining two vertices from Vnode, and

DIS is the distance offset function having two arguments: a node vertex and an offset

vertex. Each edge e from E has a length 1(e) ..›_. 0. With each offset vertex v E Voff, we
associate 2 values, yi(v) and y2(v), which denote the node vertices the offset vertex is
connected to. The two special vertices s and t of the graph are the starting and

terminating vertices (each vertex either a node or an offset vertex). We want to find
a shortest directed path from s to t, where the length of a path is the sum of the

lengths of its edges.

(1) for all v E Vnode, A(v) <- 00

if t E Voff then A(t) .- 00 .
if s E Vnode then A(s) 4- 0 and F *- { s } .
else A(yi(s)) 4- DIS(s, yi(s)) ,

A(y2(s)) 4- DIS(s, y2(s))
F 4- { yi(s), y2(s) } .

(2) if s E Vo ff and t E Voff,
if yi(s) = Mt) and y2(s) = y2(t), then

if DIS(yi(s), s) < DIS(yi(t), t),
then .(t) 4,- DIS(yi(t), t) - DIS(yi(s), s)
else A(t) 4- DIS(y2(t), t) - DIS(y2(s), s)
F4-F+{t}.

if yi(s) = y2(t) and y2(s) = yi(t), then

if DIS(yi(s), s) < DIS(y2(t), t),
then A(t) 4- DIS(y2(t), t) - DIS(yi(s), s)
else A(t) <- DIS(yi(t), t) - DIS(y2(s), s)
F.t-F+{t}.

(3) T4- Vnode.
(4) let u be a vertex in F for which A(u) is minimum; if F is empty then stop, no path

could be found.
(5) if u = t, stop, an optimal path has been found.

(6) if t E Voff, and u = yi(t) or u = y2(t):

if A(t) > A(u) + DIS(u, t)
then A(t) <- A(u) + DIS(u, t), F <- F + { t } .

(7) for each edge e E E, e: u - v,
if v E T and A(v) > A(u) + l(e)
then A(v) <- A(u) + 1(e) and F4- F + { v } .

(8)T*-T--{u}, F.t-F-{u}andgotostep(4).

10.4. Offset vertices in discrete dynamic networks

Introducing offset vertices in discrete dynamic networks is more complicated. In
a discrete dynamic network, an edge has discrete start and end values. Parallel edges
may have different start and end values. Even parallel edges with the same start and
end values may have different CONnection characteristics. Therefore we cannot
simply remove parallel edges. Since, as in a directed weighted graph, a self-loop
takes us back to the vertex we came from at an extra cost, self-loops may always be
removed.

When we introduce offset vertices in a graph, we actually remove a vertex and
the edges connected to the (offset) vertex, and replace these edges by edges directly
connecting the two node cities. Since in a discrete dynamic network the information
of the start and end values of the edges connected to the offset vertex must not be lost
(we need to know them when the offset vertex is the starting or the terminating
vertex), we need to extend our graph by two functions instead of one: one giving the
end values of the edges arriving at an offset vertex, and one giving the start values of
the edges departing from the offset vertex. We now give a formal definition of a
discrete dynamic network with offset vertices.

A discrete dynamic network with offset vertices is a structure which consists of
three sets and three functions:

(1) a set of node vertices Vnode,
(2) a set of offset vertices Voff,
(3) a set of edges E,
(4) a non-negative, real-valued function, called the connection function CON,

having three arguments: a node vertex and two edges,
(5) a non-negative, real-valued function, called START, having three arguments: an

offset vertex, a node vertex and an edge,
(6) a non-negative, real-valued function, called END, having three arguments: a

node vertex, an offset vertex and an edge.

90 91

Each edge e from E is incident to the elements of an ordered pair of node vertices.
With each edge e we associate two values: a start value start(e) and an end value
end(e). The connection function CON gives the required margin for a specific
connection (for a more thorough discussion of a discrete dynamic network, see
chapter 5). With each offset vertex v E Kff, we associate 2 values, yi(v) and y2(v),
which denote the node vertices the offset vertex is connected to. The START and
END functions give the start and end values of the edges connected to offset vertices.

10.4.1. Transforming a discrete dynamic network

In this paragraph we describe steps to transform a discrete dynamic network
into a discrete dynamic network with offset vertices, which can be equivalently, but
more efficiently searched for an optimal path.

Since we cannot remove parallel edges, we cannot test the in- and out-degree to
determine whether a vertex lies between exactly two other vertices. Instead, we
explicitly test whether all edges which arrive at an offset vertex come from exactly
one start (node) vertex, and have a connecting edge to a unique end (node) vertex,
and whether all edges which depart from an offset vertex go to exactly one end
(node) vertex, and have a preceding (connecting) edge from a unique start (node)
vertex. In a railway services network, this translates to the condition that each train
arriving at an offset station must come from a unique previous station, and there
must exist a departing train to a unique next station, which forms a connection, and
that each train departing from an offset station must go to a unique next station, and
there must exist a train from a unique previous station, which forms a connection.
Suppose vertex v is such a vertex (see fig. 10.5). Precisely, a vertex v can be made an
offset vertex if we have:

We may then make v an offset vertex. The node vertices which are connected to v are
u0 and ui:

yi(v) u0,
y2(v) ul.

Each pair of connecting edges ei and ei+i, connecting u0 and v, and v and ui
respectively, is removed from the graph and replaced by one compound edge e0i

from u0 to ui, per connecting pair. This edge becomes the start value of ei and the end
value of e;+1:

e0i: u0 -->

start(e0i) start(e;),
end(e0i) end(ei+0.

The end value of e, at v and the start value of ei+1 at v (which correspond to the arrival
and departure at the offset vertex) are stored in the START and END functions,
respectively:

END(u0, v, e0i) 4-- end(e,),
START(v, ui, e0i) start(ei+i).

All edges e which formed a connection with ei at u0 must also form a connection with

e0i at u0:

For each edge e for which CON(u0, e, ei) is defined:
CON(u0, e, e0i) 4-- CON(u0, e,

All edges e which formed a connection with ei+1 at ui must also form a connection

with e0i at ui:

For each edge e for which CON(ui, 	e) is defined:

CON(ui, e0i, e) CON(ui, 	e).

Similarly, each pair of connecting edges ej and ej+i, connecting ui and v, and v
and u0 respectively, is removed from the graph and replaced by one compound edge
ei0 from ui to u0, per connecting pair. This edge becomes the start value of ej and the
end value of ej +1:

ui -> u0,
start(ei0) 4- start(ej),

if there exist two vertices u0 and ui, u0 v, ui # v, u0
such that

for all edges ek: up -> v we have up = u0 or up = ui, and
for all edges el: v -0 ug we have ug = u0 or ug = ui, and

if each edge e,: u0 -> v, has a connecting edge 	v -0 ui, with u0 # ut,
and each edge ei+1: v -> ui, has a preceding edge ei: u0 -o v,

such that
start(ei+i) end(e,) + CON(v,

and if each edge ej: ui -' v, has a connecting edge ej+i: v u0,
and each edge ei +1: v -o u0, has a preceding edge ej: ui -> v,

such that
start(ej+i) 	end(ej) + CON(v, ej, ei+t),

92 	 93

1

end(ei0) F end(ej+1).

The end value of ej at v and the start value of ei+1 at v are stored in the START and

END functions, respectively:

END(ui, v, ei0) 4— end(ej),
START(v, u0, ei0) start(ej+i).

All edges e which formed a connection with ej at ui must also form a connection with

ei0 at ui:

For each edge e for which CON(ui, e, ej) is defined:
CON(ui, e, ei0) F CON(ui, e, ej).

All edges e which formed a connection with ej+1 at u0 must also form a connection

with ei0 at u0:

For each edge e for which CON(u0, ej+i, e) is defined:

CON(u0, ei0, e) F CON(u0, ej+1, e).

Note that since the START and END functions have an edge as third parameter,
the two (node) vertex parameters can be allowed to be the same vertex. The edge
parameter specifies the direction. So, we may allow new self-loops to occur. This
means that we do have to make sure that neither u0 nor ui is the same vertex as v (in
this case v would become both an offset vertex and a node vertex at the same time,
which cannot be allowed).

It may be, that the vertex v that we have made an offset vertex had already been
made a node vertex for some other offset vertex v.. Since an offset vertex is
connected to exactly two node vertices, and since v is connected to exactly two node
vertices, vo must lie either between u0 and v, or between v and u1. So, either

Yi(vo) = u0 and y2(vo) = v,

or

yi(vo) = ui and y2(vo) = v.

In the first case (see fig. 10.6), ui replaces v as the node city which is connected to

vo:

72(vo) ui.

94

In the second case u0 replaces v as the node city which is connected to v.:

72(v0) F u0.

Furthermore we need to add START and END values at vo for the new
(compound) edges we created earlier. In the first case for the edges e0i and ei0 that
we created replacing the edges ei and ej+1 between u0 and v. In the second case for
the edges e0i and ei0 that we created replacing the edges ei+t and ej between v and
Ui.

In the first case, the END value of the edge e0i at vo becomes the END value of

ei at v., and the START value of e0i at vo becomes the START value of e, at vo.
Furthermore the END value of the edge ei0 at vo becomes the END value of ej+1 at
vo, and the START value of ei0 at vo becomes the START value of ej+1 at vo:

END(u0, vo, e0i) 4- END(u0, v0, e1),
START(vo, ui, e0i) F START(vo, v, ei),
END(ui, v0, ei0) F END(v, v., ej+i),
START(vo, u0, ei0) F START(vo, u0, ej+i).

In the second case, the END value of the edge ei0 at vo becomes the END value
of ej at vo, and the START value of ei0 at vo becomes the START value of ej at vo.
Furthermore the END value of the edge e0i at vo becomes the END value of ei+1 at
vo, and the START value of e0i at vo becomes the START value of e, +1 at vo:

END(ui, v0, ei0) F END(ui,vo, e j),
START(vo, u0, ei0) START(vo, v, e'),
END(u0, v., e0i) END(v, v., ei+i),
START(v., ui, e0i) 4- START(v 0,

10.4.2. The algorithm to transform a discrete dynamic network

We now give a formal definition of the algorithm to transform a discrete
dynamic network into a discrete dynamic network with offset cities, which can be
equivalently but more efficiently searched for an optimal path.

Consider a finite discrete dynamic network consisting of the graph (KE) and the
connection function CON. We shall construct a discrete dynamic network with offset
vertices, consisting of Vnode, Voff, E', CON, START, END. Vn0de is the collection of
node vertices, Voff the collection of offset vertices, E' the collection of directed edges
joining two vertices from Vnode, CON the connection function. The START and END

95

functions give the start and end values of the edges connected to offset vertices. With
each offset vertex v E V.ff, we associate 2 values, yi(v) and y2(v), which denote the
two different node vertices which are connected to the offset vertex.

(1) Vat. 4- 0, Vnode <- O.
(2) E' 4-- E. Remove from E' all self-loops.
(3) for each vertex v E V,

if there exist two vertices u0 and ui, u0 # v, ui # v, u0 # ui,
such that

for all edges ek: up -' v we have u, = u0 or up = ui, and
for all edges ei: v uq we have uq = u0 or uq = ut, and

if each edge ei: u0 -> v, has a connecting edge 	v 	with u0
and each edge ei+i: v -' ui, has a preceding edge u0 v,

such that
start(ei+i) 	end(ei) + CON(v, ei,

and if each edge ej: ui v, has a connecting edge ej+i: v -' u0,
and each edge ej+i: v u0, has a preceding edge ei: ui v,

such that
start(ei+i) 	end(ei) + CON(v, ej, ej+1),

then yi(v) 4- U0 and y2(v) ui.
Voff Voff 	v }.

Vnode 4- Vnode 	UO, ui }.

for each pair of edges ei and ei+1 as described above:
E' 	E' - { ei, e,+1}.
create an edge e0i: u0 ->

start(e0i) F start(e;),
end(e0i) end(ei+i),
E' E' + e0i 1,
END(u0, v, e0i) end(ei),
START(v, ui, e0i) F start(ei+r).
for each edge e for which CON(u0, e, ei) is defined:

CON(u0, e, e0i) CON(u0, e, ei).
for each edge e for which CON(ui, e;+t, e) is defined:

CON(ui, e0i, e) CON(ui, 	e).
for each pair of edges ej and ej+1 as described above:

E' E' - { ej, ejn. }.
create an edge ei0: ut -> u0,

start(ei0) F start(ej),

end(ei0) F end(ej+0,
E' E' + { ei0 },
END(ui, v, ei0) F end(ej),
START(v, u0, ei0) F start(ei+1):
for each edge e for which CON(ui, e, ej) is defined:

CON(ui, e, ei0) CON(ui, e, es).
for each edge e for which CON(u0, ej+i, e) is defined:

CON(u0, et0, e) F CON(u0, ej +1, e).
if v E Vnode then there exist offset vertices vo for which v was a node vertex.
for each such offset vertex vo:

if yi(v.) = u0 and y2(vo) = v.
then y2(vo)

for each edge ei replaced above, for which END(u0, v0, ei) is
defined:

END(u0, v., e0i) F END(u0, vo, ei),
START(vo, ui, e0i) 4- START(vo, v,

for each edge ej+1 replaced above, for which END(v, v., ej+i) is
defined:

END(ui, v., ei0) END(v, vo, ej+i),
START(vo, u0, eio) F START(vo, u0,

else y2(vo) u0,
for each edge ej replaced above, for which END(ui, v0, ei) is
defined:

END(ui, v., ei0) F END(ui, v0, ei),
START(vo, u0, ei0) F START(vo, v, ei).

for each edge ei+1 replaced above, for which END(v, v., ei+i) is
defined:

END(u0, v., e0i) F END(v, v., ei+r),
START(vo, u1, e0i) 4- START(vo, ui, ei-I-1).

Vnode F Vnode 	v }.
else Vnode <- V.& + { V }.

10.4.3. Searching a discrete dynamic network with offset vertices

We now adapt the DYNET algorithm for searching a discrete dynamic network
from chapter 6 to allow an offset vertex as starting vertex or terminating vertex. As
we saw earlier, we only need to consider offset vertices during search if the starting
vertex or terminating vertex is an offset vertex. We shall look at each case in turn, for
the forward pass and for the backward pass.

96 	 I 	 97

10.4.3.1. An offset vertex as the starting vertex; the forward pass

In the forward pass of the definition of the DYNET algorithm (see section 6.6.),
the starting vertex is handled in step (1): a partial path is created, consisting of the
starting vertex only. The end value of the path is made the start value Tstart. Since this
path is the only path that is put in the frontier, at step (5) new (partial) paths to all
neighbours of the starting vertex are created. If the starting vertex is an offset vertex,
we create paths from the offset vertex to the two node vertices adjacent to the offset
vertex. The end values of the paths are the end values of the edges from the offset
vertex to the node vertices which are connected to it. The offset vertex is temporarily
treated as a node vertex by creating paths to its adjacent node vertices. The
information of the edges from the offset vertex to the node vertex can be recovered
by using the START and END functions to determine the start and end values of the
connecting edges. Of course we have to make sure that we include all relevant edges:
all edges which arrive within the maxiCON interval at the node vertex. Precisely:

For each edge e for which the following two ordered conditions hold:
(1) START(s, yi(s), e) Tstart,

(2) end(e) < end(enun) + maxiCON(yi(s)),
where end(emin) is the minimum end value of any edge satisfying (1).

create a partial path P = s, e, yi(s) .

The same must also be repeated for the second node vertex to which the starting
vertex is connected, y2(s):

For each edge e for which the following two ordered conditions hold:
(1) START(s, y2(s), e) Tstart,

(2) end(e) < end(emin) + maxiCON(y2(s)),
where end(emin) is the minimum end value of any edge satisfying (1).

create a partial path P = s, e, y2(s) .

10.4.3.2. An offset vertex as the terminating vertex; the forward pass

In the forward pass, when the terminating vertex is an offset vertex, we create
partial paths to the offset vertex when a partial path to one of its adjacent node
vertices has become the branching path (step (3) of the algorithm of section 6.6). We
can recognize a node vertex adjacent to the offset vertex by comparing it to the y
values of the offset vertex. We can recover the information about the edges
connecting the node vertex and the offset vertex by using the START and END
functions to determine the start and end values of the connecting edges. We only

need the edge which arrives at the offset vertex with the smallest end value. Since,
from the offset vertex, we shall not construct further paths, we do not need to include
other relevant edges (edges which arrive within the maxiCON interval at the offset
vertex). Precisely:

if ui = yi(t) or if ui = y2(t),
then find the edge 	ui y2(t) or ui yi(t) respectively, for which the
following three ordered conditions hold:

(1) END(uj, t, ej) is defined,
(2) start(ei) end(ei-i) + CON(ui, 	,

(3) END(ui, t, ei) is minimum

10.4.3.3. Offset vertices as starting and terminating vertex; the forward pass

When both the starting vertex and the terminating vertex are an offset vertex, a
special case arises when they are both adjacent to the same pair of node vertices. We
must (also) create a partial path from one offset vertex to the other directly, without
going to a node vertex first. We must find an edge which has a start value at the
(offset) starting vertex of at least Tstart, and which has a minimum end value at the
(offset) terminating vertex. These values of the edge at the offset vertices can be
recovered by using the START and END functions. In order to determine in which
direction we must go from one node vertex to the other node vertex, we can also use
the START and END values. We shall look at each possible case (see also fig. 10.8).

(1) if yi(s) = yi(t) and y2(s) = y2(t), and if there exists an edge e such that
START(s, y2(s), e) < END(yi(t), t, e),

then we must find the edge e from yi(s) to y2(t) for which the following two
ordered conditions hold:

(1) START(s, y2(s), e) Tstart

(2) END(yi(t), t, e) is minimum.

(2) if yi(s) = yi(t) and y2(s) = y2(t), and if there exists an edge e such that
START(s, y2(5), e) END(yi(t), t, e),

then we must find the edge e from y2(s) to yi(t) for which the following two
ordered conditions hold:

(1) START(s, yi(s), e) Tstart

(2) END(y2(t), t, e) is minimum.

(3) if yi(s) = y2(t) and y2(s) = yi(t), and if there exists an edge e such that

98 	 99

START(s, y2(s), e) < END(y2(t), t, e),
then we must find the edge e from yi(s) to WO for which the following two
ordered conditions hold:

(1) START(s, y2(s), e) Tstart

(2) END(y2(t), t, e) is minimum

(4) if yi(s) = y2(t) and y2(s) = yi(t), and if there exists an edge e such that

START(s, y2(s), 	END(y2(t), t, e),
then we must find the edge e from y2(s) to y2(t) for which the following two
ordered conditions hold:

(1) START(s, yi(s), e) Tstart

(2) END(yi(t), t, e) is minimum

10.4.3.4. An offset vertex as the starting vertex; the backward pass

In the backward pass, when the starting vertex is an offset vertex, we create
partial paths from the offset vertex when a partial path to one of its adjacent node
vertices has become the branching path (step (3) of the algorithm of section 6.6). We
only need the edge which arrives at the offset vertex with the greatest start value.
Since we shall not construct further paths to the offset vertex, we do not need to

include other relevant edges (edges which depart within the maxiCON interval at the

offset vertex). Precisely:

if ui = yi(s) (or respectively if u = y2(s)):

then find the edges ei-1: y2(s) ui (respectively yi(s) ui), for which the

following three ordered conditions hold:
(1) START(s , ei-1) is defined,

(2) end(ei-1) 5 start(ei) — CON(ui, 	,
(3) START(s, ei-1) is maximum.

10.4.3.5. An offset vertex as the terminating vertex; the backward pass

In the backward pass of the definition of the DYNET algorithm, the terminating
vertex is handled in step (1): a partial path is created, consisting of the starting vertex
only. The start value of the path is made the label of the terminating vertex from the

forward pass A(t). Since this path is the only path that is put in the frontier, at step (5)
new (partial) paths from all neighbours of the terminating vertex are created. If the
terminating vertex is an offset vertex, we create paths to the offset vertex from the
node vertices adjacent to the offset vertex. The start values of the paths are the start
values of the edges from the adjacent node vertices to the offset vertex. The offset

vertex is temporarily treated as a node vertex by creating paths from its adjacent
node vertices. The information of the edges from the node vertex to the offset vertex
can be recovered by using the START and END functions to determine the start and

end values of the connecting edges. Of course we have to make sure that we include
all relevant edges: all edges which depart within the maxiCON interval at the node
vertex. Precisely:

For each edge e for which the following two ordered conditions hold:
(1) END(yi(t), t, e) A(t),
(2) start(e) < start(e.) — maxiCON(yi(t)),

where end(emax) is the maximum start value of any edge satisfying (1),
create a partial path P = yi(t), e, t .

10.4.3.6. Offset vertices as starting and terminating vertex; the backward pass

In the backward pass, when both the starting vertex and the terminating vertex
are offset vertices, and both adjacent to the same pair of node vertices, again we must
(also) create a partial path from one offset vertex to the other directly, without going
to a node vertex first. We must find an edge which has an end value at the (offset)
terminating vertex of at most A(t), and which has a maximum start value at the
(offset) starting vertex. These values of the edge at the offset vertices can be
recovered by using the START and END functions. In order to determine in which
direction we must go from one node vertex to the other node vertex, we can also use
the START and END values. We shall look at each possible case (see also fig. 10.8).

(1) if yt(s) = yi(t) and y2(s) = y2(t), and if there exists an edge e such that

START(s, y2(s), e) < END(yi(t), t, e),
then we must find the edge e from yi(s) to y2(t) for which the following two
ordered conditions hold:

(1) END(yi(t), t, e) A(t)
(2) START(s, y2(s), e) is maximum.

(2) if yi(s) = yi(t) and y2(s) = y2(t), and if there exists an edge e such that
START(s, Y2(5), e) END(yi(t), t, e),

then we must find the edge e from y2(s) to yi(t) for which the following two
ordered conditions hold:

(1) END(y2(t), t, e) 5. A.(t)
(2) START(s, yi(s), e) is maximum.

(3) if yi(s) = y2(t) and y2(s) = yi(t), and if there exists an edge e such that

100

101

then A(s) 4- Tstart and create a partial path P0 consisting of s only,
end(P0) Tstart. F F { P0 } .

else
F 4- 0 .
for each edge e for which the following two ordered conditions hold:
(1) START(s, yi(s), e) Tstart,

(2) end(e) < end(emin) + maxiCON(yi(s)),
where end(emin) is the minimum end value of any edge satisfying (1).

create a partial path P = s, e, yi(s) , F-F + {P} ,
if A(yi(s)) > end(e) then A(yi(s)) <-• end(e).

for each edge e for which the following two ordered conditions hold:
(1) START(s, yz(s), e) Tstart,

(2) end(e) < end(emin) + maxiCON(y2(s)),
where end(emin) is the minimum end value of any edge satisfying (1).

create a partial path P = s, e, Y2(s) , F <- F + {P } ,

if A.(y2(s)) > end(e) then A.(y2(s)) F end(e).
(2) if s E Voff and t E Voff:

if yi(s) = yi(t) and yz(s) = y2(t), then
if there exists an edge e such that START(s, y2(s), e) < END(yi(t), t, e),
then find the edge for which the following two ordered conditions hold:

(1) START(s, y2(5), e) Tstart

(2) END(yi(t), t, e) is minimum
and create a partial path P = s, e, t , end(P) <- END(yi(t), t, e).

else find the edge for which the following two ordered conditions hold:

(1) START(s, yi(s), e) Tstart

(2) END(y2(t), t, e) is minimum,
and create a partial path P = s, e, t , end(P) 4- END(y2(t), t, e).

else
if there exists an edge e such that START(s, y2(s), e) < END(y2(t), t, e),
then find the edge for which the following two ordered conditions hold:

(1) START(s , Y2(5), e) Tstart

(2) END(y2(t), t, e) is minimum,
and create a partial path P = s, e, t , end(P) <- END(y2(t), t, e).

else find the edge for which the following two ordered conditions hold:
(1) START(s, yi(s), e) Tstart

(2) END(y 1(0, t, e) is minimum,

and create a partial path P = s, e, t , end(P) END(yi(t), t, e).
F - F + P } . If A(t) > end(P) then 40 4- end(P).

START(s, y2(s), e) < END(y2(t), t, e),
then we must find the edge e from yi(s) to y1(t) for which the following two
ordered conditions hold:

(1) END(y2(t), t, e) A(t)
(2) START(s, y2(s), e) is maximum.

(4) if yi(s) = y2(t) and y2(s) = yi(t), and if there exists an edge e such that
START(s, y2(s), e) END(y2(t), t, e),

then we must find the edge e from y2(s) to y2(t) for which the following two
ordered conditions hold:

(1) END(yi(t), t, e) A.(t)
(2) START(s , yi(s), e) is maximum.

10.4.4. DYNET for searching a discrete dynamic network with offset vertices

We now give a formal definition of the DYNET algorithm, adapted to handle an
offset vertex as starting vertex or terminating vertex. An offset vertex as starting
vertex is handled in step (1) of the forward pass and step (5) of the backward pass.
An offset vertex as terminating vertex is handled in step (5) of the forward pass and
in step (1) of the backward pass. The special case of both the starting vertex and the
terminating vertex as an offset vertex between the same pair of node vertices is
handled in step (2) of both passes. The other steps are similar to the original
definition of the algorithm for searching a discrete dynamic network (for an
explanation of the different steps see chapter 6).

Consider a discrete dynamic network containing offset vertices, consisting of

Vnode, Voff, E, CON, START, END. Kok is the collection of node vertices, Voff the
collection of offset vertices, E the collection of directed edges joining two vertices
from Vnode, CON the connection function. The two special vertices s and t of the
network are the starting and terminating vertices (both either node or offset vertices).
We want to find a legal path from s to t in our discrete dynamic network, where the
end value of the path is minimum and given this end value, the start value of the path
is maximum and at least Tstart. The maximum value of CON at a vertex u is
maxiCON(u), which is non-zero. The START and END functions give the start and
end values of the edges connected to offset vertices.

Pass 1:

(1) for all v E Kock , A(v) 4- oo , and co(v, u) = oo for each neighbour u of v.
if t E Voff then A.(t) 	°C) .

if S E Vnode

102 103

(3) let Pm be a partial path s, e0, 	ej-i, uj in F for which end(Pm) is

minimum; if F is empty then stop, no complete path could be found.
(4) if uj = t, stop, Pm is a complete path with an optimal end value.

(5) if t E Kff, then
if uj = y1(t) or if u = y2(t):
then find the edge ej: uj y2(t) or uj y1(t) respectively, for which the

following three ordered conditions hold:
(1) END(uj, t, e j) is defined,

(2) start(ej) end(ej-1) + CON(uj, ej_i,ej) ,

(3) END(uj, t, ej) is minimum.

create a partial path Pn = s, e0, 	uj-1, 	uj, ej, t ,

end(Pn) F END(uj, t, e'), and F F + { Pn } .

if)1(t) > END(uj, t, ej) then A(t) END(uj, t, ej).

(6) if end(Pm) < A(uj) + maxiCON(uj).
then for each relevant edge ej : uj

if A(uj+i) > end(ej)
then A(uj+i) 4- end(ej)
if end(ej) < A(uj+i) + maxiCON(uj+i)
then create a partial path Pn = s, e0, 	uj-1, ej-1, uj, ej, uj+1 , and

F F + { Pn } .
if end(ej) < w(uj+i,
then co(u j+i, uj) 4-- end(ej).

(7) F 4- F — Pm } and go to step (3).

A relevant edge is defined as follows: given a partial path u0,..., uj-1, 	uj and a

vertex uj+i, then the relevant edges from uj to uj+1 are the edges ej: uj uj+1 for

which the following two ordered conditions hold:
(1) start(ej) end(ej-1) + CON(u3, 	ej),
(2) end(ej) < end(emm) + maxiCON(uj+i),

where end(emm) is the minimum end value of any edge satisfying (1).

Pass 2:

(1) for all v E Vnode K(V) 	:

if s E Voff then K(s) — .
if t E Vnode

then K(t) A(t) and create a partial path P0 consisting of t only,
start(P0) A(t). F { P0 :

else
F 	,

for each edge e for which the following two ordered conditions hold:
(1) END(yi(t), t, e) 5 A(t),
(2) start(e) < start(emax) — maxiCON(yi(0),

where end(emax) is the maximum start value of any edge satisfying (1).
create a partial path P = WO, e, t , F4-F+ {P},
if K(yi(t)) < start(e) then ic(y1(t)) F start(e).

for each edge e for which the following two ordered conditions hold:
(1) END(y2(t), t, e) A(t),
(2) start(e) < start(e max) — maxiCON(y2(t)),

where end(emax) is the maximum start value of any edge satisfying (1).
create a partial path P = y2(t), e, t , F4-F+ {P},
if K(y2(t)) < start(e) then ic(y2(t)) F start(e).

(2) if s E Voff and t E Voff:

if yi(s) = y1(t) and y2(s) = y2(t), then
if there exists an edge e such that START(s, y2(s), e) < END(yi(t), t, e),
then find the edge for which the following two ordered conditions hold:

(1) END(yi(t), t, e) s A(t)
(2) START(s, y2(5), e) is maximum,
and create a partial path P = s, e, t , start(P) START(s, y2(s), e).

else find the edge for which the following two ordered conditions hold:
(1) END(y2(t), t, e) A(t)
(2) START(s, yi(s), e) is maximum,
and create a partial path P = s, e, t , start(P) F START(s, yi(s), e).

else
if there exists an edge e such that START(s, y2(s), e) < END(y2(t), t, e),
then find the edge for which the following two ordered conditions hold:

(1) END(y2(t), t, e) A(t)

(2) START(s, y2(5), e) is maximum,
and create a partial path P = s, e, t , start(P) F START(s, y2(s), e).

else find the edge for which the following two ordered conditions hold:
(1) END(yi(t), t, e) A(t)
(2) START(s, yi(s), e) is maximum,
and create a partial path P = s, e, t , start(P) F START(s, yi(s), e).

F F + { P } . If A.(t) > end(P) then (t) end(P).
(3) let Pm be a partial path uj,—, 	t in F for which start(Pm) is maximum.
(4) if uj = s, stop, Pm is an optimal complete path.
(5) if s E Von., then

if uj = yi(s) or if u = y2(s):

104 	 105

then find the edge ej-1: y2(s) uj or yi(s) --0 uj respectively, for which the

following three ordered conditions hold:

(1) START(s, uj, ej-1) is defined,

(2) end(ej-1) < start(e j) - CON(uj, ej-A)

(3) START(s, uj, ej-1) is maximum.

create a partial path 	= s, ej-1, 	uk-1, ek-1, t ,

start(Pn) START(s, u j, ej_i), and F 4- F { 	}

if K(t) < START(s , u j, ej-l) then K(t) 4- START(s, uj, ej-1).

(6) if start(Pm) > K(uj) - mctxiCON(uj)
then for each relevant edge ej-1 : uj-1 uj, with to(uj, uj-1) < start(Pm),

if K(uj-1) < start(ej-1)
then K(uj-i) F start(ej-0

if start(e j-1) > K(uj-1) - maxiCON(uj-1)

then create a partial path Pn = 	ej-1, uj,..., uk-1, ek-1, t , and

F F + {P„ } .

(7) F F - { Pm } and go to step (3).

A relevant edge is defined as follows: given a partial path uj, ej, 	uk and a

vertex uj-1, then the relevant edges from uj-1 to uj are the edges ej-1: uj-1 uj for

which the following two ordered conditions hold:

(1) end(ej-1) < start(ej) - CON(uj, ej-1,

(2) start(ej-1) > start(emax) - maxiCON(ui-1),

where start(emax) is the maximum start value of any edge satisfying (1).

106

11. Train Changes

Until now we have not taken into account one particular property of travelling
by train: (explicit) train changes. We have been interested in optimal solutions in
terms of travel time only. In a practical application, however, people are also
interested in the number of train changes. An optimal solution in terms of travel
time should also have the least number of train changes possible, given the optimal
travel time. Furthermore, people are usually also interested in solutions which may
take more travel time, but which have fewer train changes. In this chapter, we shall
first look at how we can minimize the number of train changes in an optimal
solution. Then we shall look at how we can find some suboptimal solutions with
fewer train changes.

11.1. A train in a discrete dynamic network

In the previous chapters, conceptually we changed train at each station; every
time we used an edge it was regarded as a next train. When no train change was
actually required this was implicitly represented by the connection function: if ei and
ei+1 represent the same ongoing train at the station represented by the vertex vi+i,
then CON(vi+1, ei+i) = 0.

Note that even though we may need no time between arrival and departure in
order to continue on the same train, the train may be standing at the station for some
time. Precisely, even though

CON(vi+t, ei+t) = 0
it may be so that start(ei+i) - end(ei) > 0.
It might even be so that start(ei+i) - end(ei) > maxiCON(vi+i).

In order to model a train change more accurately, we first have to introduce the
concept of a train to discrete dynamic networks.

In order to represent a train in a discrete dynamic network we give each edge e
an extra attribute, the identifier id(e). A train is a sequence of edges e0, el,..., ek such
that:

107

train 105 and from Ass to Asd by train 115. The backward pass of the algorithm,
which determines the matching latest possible departure, gives as solution to travel
from Utg to Zd by train 105, from Zd to Ass by train 110 and from Ass to Asd by train
115. This (final) solution has two train changes, whereas we could travel equally
optimally from Utg to Ass by train 105 and from Ass to Asd by train 115 with only
one train change at Ass. Such an unnecessary train change is caused by the
"greediness" of the algorithm. When we arrive at a station, we take the very first
opportunity to travel onwards (the relevant edges). We cannot tell beforehand which
non-relevant later edges (trains) might give an equally optimal solution with fewer
train changes. Trying all later non-relevant edges during the search process could
result in a combinatorial explosion. Therefore, in order to eliminate unnecessary
train changes, we shall postprocess a solution.

11.4. Eliminating unnecessary train changes

Suppose that, using the algorithm for searching a discrete dynamic network, we
have found the following (legal) path P as solution:

S = v0, e0, 	Vj, ej, vi+1,:::, ek-1, Vk = t

We must process this path P in such a way that:

(1) there is a minimum number of train changes,
(2) the path P remains optimal,
(3) the path P remains legal.

We shall first look at each of these aspects separately, and then combine them
into one algorithm.

11.4.1. Eliminating a train change

In order to eliminate unnecessary train changes we traverse the path P in a
forward fashion (since the final solution was found by a backward search process). At
each vertex vi+i, 0 i < k-1, we do the following check:

if id(ei+i) # id(ei)
then

if there exists an edge eq: vi+1 vi+2 such that id(eq) = id(ei),
then replace e;+1 by eq.

(1) the start vertex of ei-f-i is the end vertex of ei , 0 i < k,

(2) start(ei+i) end(ei) , 0 i < k,

(3) CON(vi+i, ei+i) = 0 where vi+1 is the end vertex of ei and the start vertex of

ei+1 , 0 	i < k,

Each edge ei in the sequence, 0 5 i k, is given the same identifier id(ei).

A train is a sequence of connecting edges which require no connection time.
The edges which compose the train have the same identifier. This way, a train can be
viewed as a macro operator: one super edge consisting of multiple connecting edges
(for a discussion of macro operators see [Da, 1977]).

11.2. A train change in a discrete dynamic network

Suppose we have the following (legal) path P in a discrete dynamic network:

v0, e0, 	vj, ej, 	ek-1, Vk

A connection vi+i, ei, ei+1 0 i < k, is a train change if

id(ei+i) # id(ei)

or equivalently,

CON(vi+i, ei+i) > 0.

11.3. Solutions with unnecessary train changes

Sometimes, unnecessary train changes occur in a solution found by using the
DYNET algorithm for searching discrete dynamic network (presented in chapter 6).
For instance, consider the following example, in which we want to travel from Utg to
Asd, departing at 7:00. The changing time at Zd and Ass is 5 minutes.

100 105 110 115 Station
Utg 7:00 7:10 Uitgeest
Zd 7:15 7:25 7:30 Zaandam
Ass 7:35 7:40 7:45 Amsterdam Sloterdijk
Asd 7:50 Amsterdam Central Station

The forward pass of the algorithm, which determines the earliest possible
arrival, gives as solution to travel from Utg to Zd by train 100, from Zd to Ass by

108 109

At each vertex we check whether there is a train change. If there is, then we check
whether the previous train continues to the same station as the next train, in which
case the journey can actually be continued on the previous train.

11.4.2. Preserving optimality of solution

In the process we must, however, take care to preserve optimality of solution.
For instance, consider the following example, in which we want to travel from Hk to
Asd. The changing time at Hlm is 4 minutes.

105 200 Station
Hk 8:00 Heemskerk

Hlm 8:16 Haarlem (arrival)
Hlm 8:20 8:23 Haarlem (departure)
Asd 8:35 8:38 Amsterdam Central Station

In this example, the search algorithm would give as solution to travel from Hk
to Hlm by train 200, and from Hlm to Asd by train 105 (arriving at 8:35). If we would
traverse this solution as described in the previous section, we would replace train 105
from Hlm to Asd by train 200 (resulting in an arrival at 8:38). Although this is a
solution with one fewer train change, it has become suboptimal. So, when the edge

we try to replace by eq arrives at the terminating vertex vk, we must also test whether

end(eq) s end(ek-1). In a case like this, when a train stands at a station longer than
the time required to change to another train (possibly also going to our destination),
the solution may become suboptimal. Another case in which this might occur is when
the ongoing train to our destination is slower than the train we changed to.

11.4.3. Preserving legality of solution

We should also take care to preserve legality. For instance, consider the
following example, in which we want to travel from Hk to Ut. The changing time at
Hlm is 4 minutes and at Asd 5 minutes.

400 500 Station
Hk 9:00 Heemskerk

Hlm 9:20 9:25 Haarlem
Asd 9:45 9:47 Amsterdam Central Station
Ut 10:12 Utrecht Central Station

In this example, the search algorithm would give as solution to travel from Hk
to Hlm by train 400, and from Hlm to Ut by train 500. If we would traverse this
solution as described above, we would replace train 500 from Hlm to Asd by train

400. However, that would yield an illegal path, since the margin at Asd is only 2
minutes whereas the changing time is 5 minutes. We cannot simply test whether the
next change would have a sufficient margin (test whether start(ei+2) — end(eq)
CON(v,+2, eq, ei+2)), because it may be possible to also replace the next train ei+2, in
which case we would not have to change trains at all. Instead, we must keep track of
which illegal changes may occur, and backtrack when we cannot replace a next train
resulting in the illegal change. We can describe a backtracking process by using a
recursive definition.

11.4.4. The algorithm to eliminate unnecessary train changes

We now combine the techniques discussed in the previous sections into one
recursively defined process TRAVERSE(P, i):

Suppose P = v0, e0, 	vj, 	ek-1, vk:

iefl else e=
k — 1 then TRAVERSE (P, i) TRUE.

if id(e,+i) # id(e,)
then

if there exists an edge eq: vi+1 --> vi+2 such that
(1) id(eq) = id(e,) and
(2) end(eq) end(ei+i) if i+2 = k.

then

replace ei+1 by eq,
if TRAVERSE(P, i+1) = FALSE

if start(ei+2) — end(eq) < CON(vi+2, eq, ei+2)
then

replace back eq by ei+i,
TRAVERSE(P, i+1),
TRAVERSE(P, i) 4- FALSE.

else TRAVERSE (P, i) TRUE.
else TRAVERSE(P, i) <- TRUE.

else TRAVERSE(P, i+ 1),
TRAVERSE(P, i) <- FALSE.

else TRAVERSE(P, i+ 1),
TRAVERSE(P, i) TRUE.

After the search algorithm for searching discrete dynamic networks has given a
(legal and optimal) solution path P, unnecessary train changes can be eliminated by
calling TRAVERSE (P, 0).

Asd Hlm

300 	 Zd

200

200

300 	Ass 300
Fig. 11.1.

200

11.5. Suboptimal solutions with fewer train changes

Until now we have been solely interested in optimal solutions, i.e. solutions with
the least travel time regardless of the number of train changes. In a practical
situation however, people often want to know not only the quickest solution, but also
solutions which may take more time but have fewer train changes. In the following
sections we shall look at different, increasingly complex cases of suboptimal
solutions with fewer train changes. We shall show how the DYNET algorithm for
searching discrete dynamic networks can be adapted to find some of these cases.

11.5.1. Competing solutions

A simple case of suboptimal solutions with fewer train changes is the case in
which two solutions with different characteristics (in terms of travel time and train
changes) compete at a vertex. For instance, consider the following example, in which
we want to travel from Hk to Asd (see fig. 11.1). The changing time at Utg is 3

minutes.

100 200 300 Station
Hk 8:00 8:00 Heemskerk
Utg 8:05 8:08 1 Uitgeest
Hlm i 8:25 Haarlem
Zd 8:25 i Zaandam
Ass 8:35 8:40 Amsterdam Sloterdijk
Asd 8:40 8:45 Amsterdam Central Station

The optimal solution, with one train change, is to travel from Hk to Utg by train
100, and from Utg to Asd by train 200. However, we could also travel from Hk to Asd
directly by train 300, with only 5 minutes more travel time.

Utg
100
Hk

11.5.2. Using a change value

When we are using the DYNET algorithm in the example of fig. 11.1, from Hk
Utg gets labeled 8:05 and Him gets labeled 8:25. Then Utg becomes the branching
vertex and Zd gets labeled 8:25. Hlm becomes the branching vertex next and Ass
gets labeled 8:40. Then Zd becomes the branching vertex and Ass gets relabeled
8:35. Ass becomes the branching vertex (by the partial path via Zd) and Asd gets
labeled 8:40. When Ass becomes the branching vertex for the second time (by the
path via Hlm) it is rejected because it arrives outside the maxiCON interval. So, the
direct path is developed until Ass, and is then rejected, favouring the faster path.

We can find such suboptimal solutions with fewer train changes, which compete
with optimal solutions with more train changes, by introducing a change value. The
change value is the extra time we are prepared to travel to avoid one train change. It
is the time a train change is "worth". In the algorithm for searching discrete dynamic
networks, the end value of a path is used to evaluate a path in the forward pass, and
the start value of a path is used in the backward pass. With the change value, we can
give each path a corrected end value in the forward pass, and a corrected start value in
the backward pass. The corrected end value of a path P, cend(P), is defined as:

Cend(P) = end(P) + CHANGES(P) * change_value

where CHANGES (P) is the number of train changes occurring in P.

Similarly, for the backward pass of the algorithm, the corrected start value is defined
as:

cstart(P) = start(P) — CHANGES(P) * change_value.

By having the algorithm search for paths with optimal corrected start and end values,
whenever there is a choice, a suboptimal solution with fewer train changes is
preferred.

We now give a formal definition of the DYNET algorithm, using corrected start
and end values (for a detailed discussion of the different steps of the algorithm,
please refer to chapter 6).

Consider a discrete dynamic network consisting of the graph G = (KE) and the
connection cost function CON. The maximum value of CON at a vertex u is
maxiCON(u), which is non-zero. The number of train changes in a path P is denoted
by CHANGES(P). The change_value is the time that we are prepared to travel to
avoid one train change. The corrected end value of a path P, cend(P), and the

113 112

corrected start value of a path P, cstart(P), are defined as above. The two special

vertices s and t of the network are the starting and terminating vertices. We want to

find a legal path from s to t in our discrete dynamic network, where the corrected end

value of the path is minimum and given this corrected end value, the corrected start

value of the path is maximum and its start value at least Tstart.

Pass 1:

(1) yl(s) F Tstart and for all y E V, y # s, 	4- 00

Create a partial path P0 consisting of s only, cence0) Tstart:

For all y E V, w(v, u) = 00 for each neighbour u of v.
(2) F •*- { P0 } .
(3) Let Pm be a partial path s, e0, 	uj-j, 	uj in F for which Cend(Pm) is

minimum; if F is empty then stop, no complete path could be found.

(4) if uj = t, stop, Pm is a complete path with an optimal corrected end value.

(5) if cemem) < A.(uj) + maxiCON(ui).

then for every relevant edge ej : uj -› uj +1:
create a partial path Pn = s, e0, 	u j 	uj, ej, u +1

Cend(Pn) end(Pn) + CHANGES(Pn) * change value
if A(uj+i) > Cend(Pn)
then A(uj +1) F Cend(Pn)

if Cend(Pn) < A(uji-i) + maxiCON(uj+i)
then F F + { Pn } .
if end(ej) < w(ui+1, 11i)
then to(uj+i, uj) F end(ei).

(6)F4-F— {Pm } and go to step (3).

A relevant edge is defined as follows: given a partial path u0,..., uj-1, 	uj and a

vertex uj+i, then the relevant edges from uj to uji-i are the edges ej: uj uj+1 for

which the following two ordered conditions hold:

(1) start(ej) end(ei-1) + CON(ui, 	ej), and

(2) end(ej) < end(emm) + maxiCON(ui+i),
where end(emin) is the minimum end value of any edge satisfying (1).

Pass 2:

(1) K (t) F A(t) and for all y E V, y # t, K (v) 4- — 00 .
Create a partial path P0 consisting of t only, cstart(P0) E A(t).

(2) F { P0} .
(3) Let Pm be a partial path uj,..., 	ek-1, t in F for which cstart(Pm) is maximum.

114

(4) if uj = s, stop, Pm is an optimal complete path.
(5) if Cstart(Pm) > K(uj) — maxiCON(u)

then for every relevant edge ej-1 : uj-1 uj, with (qui, uj-1) 5 start(Pm),
create a partial path Pn = uj-1, ej-1, 	uk-1, 	t
Cstart(Pn) F start(Pn) — CHANGES(Pn) * change _value.
if K(uj-1) < Cstart(Pn)

then tc(uj-1) F Cstart(Pn) tart,

if cstart(Pn) > K(uj-i) — maxiCON(ui-1)
then F F +{Pn } .

(6) F 4- F — { Pm } and go to step (3).

A relevant edge is defined as follows: given a partial path uj, ej, uj+1,..., uk and a
vertex uj-i, then the relevant edges from uj-1 to uj are the edges ej-1: uri -* uj for
which the following two ordered conditions hold:

(1) end(ei-1) s start(ej) — CON(ui, 	es), and
(2) start(ei-1) > start(emm,) — maxiCON(uri),

where start(e max) is the maximum start value of any edge satisfying (1).

Suppose that in the example of fig 11.1, the change value is 15. Then, in the
forward pass, the corrected end value of the partial path Hk—*Utg-Ass (with one
train change) would be 8:35 + 1 * 15 = 8:50, and the corrected end value of the
(direct) partial path Hk.-411m-Ass would be 8:40 + 0 * 15 = 8:40. So, the direct
path would be favoured.

11.5.3. Using macro operators

There are situations however, when the above approach will fail to find
suboptimal solutions with fewer train changes. For example consider the following
example in which we want to travel from Utg to Asd (see fig. 11.2). The changing
time at Ass is 5 minutes.

400 410 500 Station
Utg 8:00 8:00 Uitgeest
Him 8:25 Haarlem
Ass 8:30 8:35 8:40 Amsterdam Sloterdijk
Asd 8:40 8:45 Amsterdam Central Station

The optimal solution, with one train change, is to travel from Utg to Ass by train
400, and from Ass to Asd by train 410. However, we could also travel from Utg to
Asd directly by train 500, with only 5 minutes more travel time. The algorithm
described above will fail to find this solution. From Utg, Hlm is labeled 8:25 and Ass

115

Utg

500

Hlm
500
	

Ass 500

Fig. 11.2.

is labeled 8:30. Hlm becomes the next branching vertex and from Hlm, Ass is not
relabeled and the new path (which would eventually result in the direct path) is not
put in the frontier because it arrives outside the (corrected) maxiCON interval: the
corrected end value of the partial path Utg-*Ass is 8:30 + 0 * 15 = 8:30 (remember
that the change_value is 15), while the corrected end value of the partial path
Utg-.111m-)Ass is be 8:40 + 0 * 15 = 8:40. So, the path resulting in one train change
is still preferred.

The problem is that, as a result of the path so far (from Utg to Ass), a train
change is induced later (from Ass to Asd). So, we are faced with the problem that in
order to find paths which will eventually result in suboptimal paths with fewer train
changes, we must remember and develop more paths than those which arrive within
the maxiCON interval only. However if we do not insist on finding all suboptimal
paths with fewer train changes, we do not need to remember all paths, and those
which we do need to remember need not be developed further in all directions.

11.5.3.1. Which paths to remember

Suppose the path with the best corrected end value which arrives at a vertex v,
path P, has an end value of t, has CHANGES(P) changes, and a corrected end value
of cend(P). We need to remember all paths which arrive at v and have the same
number of train changes.

Paths with fewer train changes but a higher corrected end value have lost more
time than we valued the decrease in train changes was worth, compared to P.
Although it is not impossible that these paths "improve" later on (i.e. do become
interesting because the number of train changes in the optimal solution has
increased) and result in an interesting solution, we do not develop such paths

116

further. We have to make a trade-off between efficiency of search and the number of
interesting solutions which we try to find.

Similarly, for paths with more train changes and a higher corrected end value,
the excess number of train changes is not worth the decrease in travel time,
compared to P. Again, there is no guarantee that these paths do not improve later on
and result in an interesting solution, but we do not develop those paths further. At
the end of this chapter we shall look into the possibility of paths which are not
interesting locally but improve later on.

11.5.3.2. Which paths to develop

First we make the observation that, since all paths we remember have the same
number of train changes and since all those paths have greater corrected end value
than P, it must be that for all paths PL, which we remember, we have end(P)
end(PL). For the reasons describe in chapter 6, of these paths, those which arrive
within the interval end(P) + maxiCON(v) need to be developed one step further in
all directions (i.e. allowing new train changes to occur). The other paths are only
interesting if they result in fewer train changes later on. Since any train which can be
used to change to from these paths, can also be used from path P, changing trains
from these paths will not give interesting solutions which cannot be constructed from
P. Therefore, we only develop the paths arriving outside the maxiCON interval using
the train represented by the last edge, i.e. along its macro operator.

11.5.3.3. The DYNET algorithm, using macro operators

We now give a formal definition of the DYNET algorithm for searching discrete
dynamic networks adapted to use macro operators to favour solutions with fewer
train changes. In the algorithm, the number of the train changes of the (corrected)
best path arriving at a vertex v is denoted by co(v).

Consider a discrete dynamic network consisting of the graph G = E) and the
connection cost function CON. The maximum value of CON at a vertex u is
maxiCON(u). The number of train changes in a path P is denoted by CHANGES(P).
The change_value is the time that we are prepared to travel to avoid one train
change. The corrected end value of a path P, cend(P), and the corrected start value of
a path P, cstart(P), are defined as previously. The two special vertices s and t of the
network are the starting and terminating vertices. We want to find a legal path from s
to t in our discrete dynamic network, where the corrected end value of the path is
minimum and given this corrected end value, the corrected start value of the path is
maximum and its start value at least Tttart:

117

Asd

Pass 1:

(1) A(s) 	Tstart and for all v E V, y s, A.(y) 4- .
Create a partial path P0 consisting of s only, cenre0) 4- Tstart.

For all v E V, w(v, u) = 00 for each neighbour u of v.
(2) F 4- { PO .

(3) Let Pm be a partial path s, e0, 	 uj in F for which cend(Pm) is

minimum; if F is empty then stop, no complete path could be found.

(4) if uj = t, stop, Pm is a complete path with an optimal corrected end value.

(5) if CHANGES(Pm) = co(u) and cend(Pm) < A(u j) + maxiCON(uj),
then for every relevant edge ej : uj -> ui+i:

create a partial path Pn = s, e0, 	 uj, e j, uj+1 .
Cend(Pn) F end(Pn) + CHANGES(Pn) * change value
if A.(uj+i) > Cend(Pn)

then A.(tti +1) F Cend(Pn) and 99(uj+i) F CHANGES(Pn).
F F + { Pn} .
if end(e) < w(uj+i, uj)
then w(uj+i, uj) F end(e).

(6) if CHANGES(Pm) = co(uj) and A(u j) + maxiCON(uj) 5- cearem).
then for the edge ej : uj -> uj+1 for which id(e j) =

create a partial path Pn = s, e0, 	uj-1, 	uj, ej, uj+1 .

Cend(Pn) F end(P,) + CHANGES(Pn) * change _value
if il,(uj+i) > Cend(Pn)

then A.(uj +1) F Cend(Pn) and so(uji-i) CHANGES(Pn).
F F +{Pn} .

(7) F 4-- F - { Pm } and go to step (3).

A relevant edge is defined as follows: given a partial path u0,..., 	uj and a

vertex uj+i, then the relevant edges from uj to uj+1 are the edges ej: uj -> uj+1 for

which the following two ordered conditions hold:

(1) start(e) end(ej_i) + CON(ui, ej-i, ej), and

(2) end(ej) < end(emm) + maxiCON(uj+i),
where end(emtn) is the minimum end value of any edge satisfying (1).

Pass 2:

(1) K(t) .E- A(t) and for ally E V, y # t, K(v) 4-- -
Create a partial path P0 consisting of t only, Cstare0) F A(t).

(2) F { P0} .

118

(3) Let Pm be a partial path uj,..., uk-1, ek-i, t in F for which cstarem) is maximum.
(4) if uj = s, stop, Pm is an optimal complete path.
(5) if yo(uj) = CHANGES(Pm) and cstart(Pm) > K(uj) - maxiCON(u),

then for every relevant edge ej_i : uj-1 -> uj, with w(uj, uj-i) s start(Pm),
create a partial path Pn = uj-1, 	 ek-1, t ,
cstart(Pn) start(P,) - CHANGES(Pn) * change value.
if K(uj-1) < Cstaren)

then K(uj-i) 4- cstart,n 1 and co(uj-1) CHANGES(Pn). ,
F F +{Pn} .

(6) if so(uj) = CHANGES(Pm) and K(u j) - maxiCON(uj) > cstarem)
then for the edge ej-i : uj-i -' uj, with 	= id(e),
and with w(uj, uj-1) < start(Pm),

create a partial path Pn = 	uj,..., 	ek-1, t .
cstart(Pn) F start(Pn) - CHANGES(Pn) * change _value.
if K(uj-i) < Cstaren)

then K(uj-1) cstart(Pn) and yo(uj_i) CHANGES(Pn).
F F + { Pn} .

(7) F +- F - { Pm } and go to step (3).

A relevant edge is defined as follows: given a partial path uj, ej, uj+1,..., uk and a
vertex uj-1, then the relevant edges from u j-i to uj are the edges ej-i: uj-i -› uj for
which the following two ordered conditions hold:

(1) end(ej-1) < start(ej) - CON(uj, 	ej), and
(2) start(ej-1) > start(emax) - maxiCON(uj-1),

where start(emax) is the maximum start value of any edge satisfying (1).

11.5.3.4. Other cases

As we already mentioned, there are still cases in which the algorithm described
above fails to find an interesting suboptimal solution. For instance, consider the
following case in which we want to travel from Uitgeest to Utrecht CS (see fig. 11.3).
The changing time at Hlm is 4 minutes and at Ass and Asd 5 minutes. The
change _value is 15.

119

Utg 	 Utg

Hlm 	110 	Ass 115 Asd 	120 	Ut 	Hlm 	400 	420 Asd

Fig. 11.3. 	 Fig. 11.4.

105 110 115 120 200 250 Station

Utg 8:00 8:05 Uitgeest
Hlm 8:25 8:30 Haarlem
Zd I 8:45 Zaandam
Ass 8:45 8:50 9:05 9:10 Amsterdam Sloterdijk

Asd 8:55 9:00 9:15 Amsterdam Central Station

Ut 9:25 9:40 Utrecht Central Station

The partial path Utg->Him--*Ass has an end value of 8:45, with one train change,

giving a corrected end value of 9:00. The partial path Utg-'Zd—Ass has an end value

of 9:05, with no train changes, so its corrected end value is 9:05. Since the extra 20
minutes is not worth the fewer train change, the path is not developed further. So, we
do not find the path to Ut with an end value of 9:40, and a corrected end value of 9:55.

The path we do find, arrives at Ut at 9:25 with three train changes, giving a corrected
end value of 10:10. In order to find such a path, which has fewer train changes but
have lost too much time locally and "improve" later on, we must develop paths with
fewer train changes allowing new train changes to occur (i.e. not only develop it
along its macro operator).

A similar situation can occur with solutions which have a better end value but

which have locally too many train changes, and improve later on, compared to the
optimal solution. For example consider the following case, in which we want to travel
from Uitgeest to Amsterdam CS (see fig. 11.4). The changing time at Zd and Ass is

5 minutes. The change value is 15.

300 305 310 400 410 Station
Utg 8:00 8:00 Uitgeest
Him I 1 8:25 Haarlem
Zd 8:15 8:20 Zaandam
Ass 8:30 8:35 8:40 8:55 Amsterdam Sloterdijk
Asd 8:40 9:00 Amsterdam Central Station

The partial path Utg-Hlm—Ass has an end value of 8:40, with no train change,
so its corrected end value is 8:40. The partial path Utg-Zd--a.Ass has an end value of
8:30, with one train change, giving a corrected end value of 8:45. Since the extra train
change is not worth the 10 minutes decrease in travel time, it is not developed
further. So, we do not find the path to Asd with an end value of 8:40, and a corrected
end value of 9:10. The path we do find, arrives at Ut at 9:00, giving a corrected end
value of 9:15. In order to find these paths, we need to develop paths which have more
train changes further, allowing new train changes to occur.

A final example is a situation in which a later non-relevant edge (train) results
in a better path. Suppose we want to travel from Utg to Asd. The changing time at
Hlm is 4 minutes, the changing time at Ass is 5 minutes. The change _value is 15.

100 105 110 200 Station
Utg 8:00 Uitgeest
Him 8:10 8:15 8:30 Haarlem
Ass 8:30 8:35 8:45 Amsterdam Sloterdijk
Asd 8:45 8:55 Amsterdam Central Station

From the partial path Utg-Him (with train 100), train 105 is relevant and train
200 is not relevant. However, using train 200 would give a path with a corrected end
value of 9:10 (the end value of the path would be 8:55, the one train change would
give the path a corrected end value of 9:10). The path we do find (with train 100, 105
and 110) arrives at 8:45, and its two train changes give it a corrected end value of
9:15. In order to find such a path with an optimal corrected end value, we must
develop all later non-relevant edges, not allowing new train changes (i.e. along their
macro operator).

120
	

121

12. Implementation

In this chapter we shall discuss two implementation issues which both greatly
influence the memory requirements and the (computational) speed of the
algorithms discussed in the previous chapters. First we shall look at how a network
can be represented in computer memory. Then we shall look at how the frontier (the
collection F holding all tentatively labeled vertices) can be represented and handled
when implementing a label setting algorithm (see chapter 3 for a discussion of label
setting algorithms).

12.1. Representing a network

A network can be represented in computer memory in a number of ways.
Without considering the actual search algorithm as such, an efficient representation
of the network can speed up searching substantially. We distinguish four kinds of
representation:

(1) matrix representation;
(2) ladder representation;
(3) forward star representation;
(4) sorted forward star representation.

In our example representations we shall use the network of fig. 12.1.

12.1.1. Matrix representation

In a matrix representation, the network is represented by a 1V1 * IVI matrix.
The matrix entry (i, j) contains the length of the edge connecting vertex i and vertex
j if it exists; if the edge does not exists it contains 00. The space requirement of this
representation is 1V12 times the space needed to store the attributes of an edge (the
name and the length of an edge in a normal graph, the name and the start and end
value of an edge in case of a discrete network). When the network is sparse, namely

when the number of edges is significantly smaller than IVI 2, the matrix contains 00's
for the larger part. Note that it is not possible to represent parallel edges in a normal,

122 123

V3

Fig. 12.1.

two dimensional matrix. If parallel edges occur, as in railway service networks, the
matrix must either be made three dimensional or extra rows and columns must be
added. The matrix representation of our example network looks as follows (an extra
column for v2 is added to store the parallel edges from v1 to v2):

v1 v2 e0 7
v1 v2 e1 6
V1 V3 e2 8
v1 va e3 8
v2 v1 ea 7
V2 V4 e5 3
V3 V4 eo 5
va v1 e7 9
V4 V2 es 4

12.13. Forward star representation

In a forward star representation the edges in the ladder are ordered on their
start vertex, which is stored non-redundantly. An array and a list are used in this
representation. The array is a pointer array of length 1 V1. The list is a linear list of
length 1E1, describing the edges. Each entry contains the end vertex and the
attributes of the edge. The elements of the pointer array indicate where in the list the
edges departing from a vertex are stored. Apart from some gain in memory space,
the advantage of this representation is the simplified searching procedure that can
be used. In our algorithms we repeatedly have to determine the edges connecting the
adjacent vertices of a particular vertex. The pointer array allows an efficient
determination of these edges, without having to go through a (possibly sorted) list.
The collection of adjacent vertices is called the forward star of a vertex. The forward
star representation of our example network looks as follows:

V1 V2 V2 V3 V4

V1 00 e0 7 e1 6 e2 8 e3 8

v2 ea 7 00 00 00 es 3
V3 00 00 00 00 e6 5

V4 e7 9 es 4 00 00 00

12.1.2. Ladder representation

In a ladder representation, all edges of the network are stored in a list, each
entry consisting of the start vertex, the end vertex, the name and the length of an

edge (or the start and end values of an edge in a discrete network). The list can be
sorted on start vertex. The representation requires 1E1 times the space required to
store one entry (the two vertices and the attributes of an edge). Obviously, the list is
always completely filled. The start vertex is stored redundantly when many edges
depart from a vertex. The ladder representation of our example network looks as

follows:

vi-). v2 e0 7
v2 e1 6
v3 e2 8
V4 e3 8

v2--> v1 ea 7
V4 es 3

v3-> V4 e6 5
va-> v1 e7 9

V2 es 4

Note that, when many parallel edges occur (as in railway service networks), the end
vertex is stored redundantly. This can be avoided by using the same approach for the
storage of the end vertices as we used for the start vertices, and use a second pointer
array. Such a representation of our example network looks as follows:

124 	 125

vi-' v2--> e0 7
e1 6

v3-> e2 8
va-' e3 8

V2-> Vi-' ea 7

v4-0 es 3
v3-,. va-> e6 5

va-> Vi-' e7 9

v2-> ea 4

12.1.4. Sorted forward star

In a sorted forward star representation, all end vertices in the forward star of a
vertex are sorted on increasing edge length. The sorted forward star representation

of our example network looks as follows:

1/1-> v2 ei 6
v2 e0 7
V3 e2 8

va e3 8

v2-> va es 3
v1 ea 7

V3-> V4 e6 5

va-> V2 eg 4

v1 e1 9

In the Dantzig implementation of a label setting algorithm (see [Da, 1986]),
when a vertex is made permanent, only the nearest vertex in the forward star of this
vertex is visited. Because the nearest vertex of the forward star will get a smaller
label than the other adjacent vertices, it will also be the first of these vertices to
become permanent. When this vertex then actually becomes permanent, however,
because this vertex was the only vertex that was visited from the forward star of its
predecessor, the predecessor has to be checked again to determine the next vertex
from the forward star to be visited (from the predecessor).

For an example, suppose that in fig. 12.1, we search for a path from v1 to va.
When v1 becomes permanent, only the nearest vertex in the forward star of Vi, v2, is
visited and labeled 6. 'Then v2 becomes permanent. Since v2 was the only vertex from
the forward star of v1 that was visited, we must now determine the next vertex from
the forward star of vi: v3, which is visited and labeled 8. From v2, the first vertex from
the forward star of v2, va is visited and labeled 9. Then v3 becomes permanent. Since

126

v3 was not the last vertex from the forward star of v1, we determine the next vertex to
be visited from vi: va, which is visited and labeled 8. Furthermore, from v3, the first
vertex of its forward star, va is visited and labeled 13. Then va becomes permanent
and we have found a shortest path. In this example, only one vertex from the forward
star of v2 and v3 needed to be visited, whereas in a usual implementation all vertices
in the forward star of these vertices would have been visited.

Of course, in a discrete dynamic network the edges can be sorted on shortest
length and then on start value, however, since in a discrete network the distance to
the next vertex not only depends on the length and the start value of an edge, but also
on the current label of the source vertex, it is not possible to determine beforehand
which vertex from the forward star will be nearest. So, if we want to use the Dantzig
implementation in a discrete (dynamic) network, we must determine the nearest
vertex in the forward star at run-time.

12.2. Implementing the frontier

Label setting algorithms select the vertex from the collection of tentatively
labeled vertices (the frontier: the collection F in our descriptions of label setting
algorithms, which include all algorithms we described for searching discrete and
discrete dynamic networks), that has the smallest label (the currently shortest
distance from the source vertex). Each vertex that is labeled is put in the frontier. So,
in order to make access to the frontier efficient, it must be implemented in such a
way that:

(1) the vertex with the lowest label can be determined easily;
(2) new elements can be readily inserted into the frontier.

We shall discuss five ways to implement the frontier:

(1) a sorted list;
(2) a binary heap;
(3) address calculation;
(4) circular address calculation;
(5) address calculation with buckets.

In our discussion we shall use the following example and assume integer values.
Suppose that we are searching some network for a shortest path from the source
vertex to the goal vertex, and that at some time during search, the frontier consists of
the following vertices: v0 with A(v0) = 25, v1 with A(vi) = 27, v2 with A(v2) = 27, v3 with
A(v3) = 28, va with)(va) = 29, vs with ..(vs) = 30, v6 with 11(v6) = 32, v7 with
1(v7) = 32, vs with A(vs) = 33, v9 with 1(v9) = 34 (see for example the figure of

127

v2 (27)

/ \
v9 (34) 	v8 (33)

va (29) v6 (32) 	 vs (30)

v7 (32)
Fig. 12.2.

section 12.2.1). We shall show the frontier before the element with the smallest label
(the vertex v0) is determined, after it has been removed, and after the next element vi0,
with A(vi0) = 31, has been inserted.

12.2.1. Sorted list v1 (27) V3 (28)

A simple structure is to use a sorted list to represent the frontier. The list is
sorted in ascending order with the vertex with the smallest label at the front.
Inserting a new element into the frontier takes at most I FI comparisons (where
F I is the number of elements in the frontier). Removing the vertex with the

smallest label does not cost any comparisons. Before the vertex with the smallest
label is determined, our example looks as follows:

V0 Vi V2 V 3 V4 V 5 V6 V7 Vg V9

25 27 27 28 29 30 32 32 33 34

After the vertex with the smallest label (v0) has been removed, the frontier looks as
follows:

Vi V2 V3 V4 V5 V6 V7 V8 V9

27 27 28 29 30 32 32 33 34

After vertex vi0 with label 31 has been added, the frontier looks as follows:

v2 (27)

vs (33) 	 va (29) v6 (32)

V 3 (28)

V5 (30)

V1 V2 V3 V4 V5 V10 V6 V7 Vg V9

27 27 28 29 30 31 32 32 33 34

12.2.2. Binary heap

A more efficient way of implementing the frontier is to use a binary heap. A
binary heap is a binary tree structure in which an element (of the tree) at a higher
level has a smaller label than all other elements in its two subtrees. The vertex with
the smallest label is the top element of the tree. Fig. 12.2 shows how the frontier
might look like before the element with the smallest label is removed.

When the element with the smallest label (the top element) is removed, its
place is taken by the child element which has the smallest label of the two. This
element in turn, is replaced by its child element with the smallest label, and so on,
until the last level of the tree has been reached and the tree has been rearranged.
Rearranging the tree in this way costs at most logs I FS comparisons. In our example,

the top element v0 is replaced by V1, v1 by v2, v2 by vs. The tree then looks as in fig.
12.3.

128

v9 (34) 	 v7 (32)
Fig. 12.3.

A new element is inserted at the first free leaf of the tree. Then the label of this
element is compared to the label of its parent element. If the new element's label is
smaller than the label of its parent, then the two elements are interchanged. Then its
label is compared to the label of its new parent, and so on, until the label of the
parent is smaller than the label of the new element (so there is no interchange
necessary) or when the top of the tree has been reached. Rearranging the tree after
inserting a new element takes at most log2IF I comparisons. In our example, vi0 is
inserted as the second child of vs. Since its label is smaller than the label of vs, vi0 and
v8 are interchanged. Since the new parent of vs, vs, has a smaller label than vi0, no
next interchange is necessary, and the tree has been rearranged. The tree then looks
as in fig. 12.4.

129

Vi --->V2

V3

V4

Vs

V9

V0

V5

V6)V7

Vi --->V2

V3

V4

V5

vi0

(33)

(34)

(35)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

V6 ---4V7

Vs

V9

v2 (27)

/ \
vi0 (31) 	 va (29)

v9 (34) 	vs (33) v7 (32)
Fig. 12.4.

12.2.3. Address calculation

Another efficient way of implementing the frontier is by means of address
calculation (see [Di, 1969]). This structure consists of an array of all possible
distances to the source vertex of the network. Linked to the elements of this array
are the vertices in the frontier which have the corresponding distance to the source
vertex. Our example frontier would look as in fig. 12.5.

When the vertex with the smallest label is selected, the first non-empty element
of the pointer array is determined and the vertex linked to it is removed. In our
example the first non-empty element is the element labeled 25, pointing to v0. With
v0 removed the frontier looks as in fig. 12.6.

Fig 12.5.

When inserting a vertex, it is linked to the element of the pointer array with the
corresponding label by means of a pointer. When we add vi0, it is linked to the
element labeled 31 of the pointer array. After the addition of vi0 the frontier looks as
in fig. 12.7.

Fig. 12.8.

12.2.4. Circular address calculation

In a large network, the pointer array used in address calculation will have large
dimensions (the maximum shortest distance between any two vertices of the network
is long). However, the relevant part of the array, storing all tentatively labeled
vertices, has only /ma„ + 1 positions, where /m. is the maximum length of any edge
from the network. It is the maximum distance any neighbour can be from any vertex.

It is easily seen that the relevant part of the array is of length only lmax + 1, by the
fact that in a label setting algorithm, the current vertex (the vertex that was made
permanent most recently) is the vertex with the smallest label. No vertex with a
larger label has been made permanent yet. So, no vertex which has not been made
permanent yet, but which was visited from any of the vertices which were made
permanent (and thus must be in the frontier), can have a label which is larger than
the label of the current vertex plus the maximum distance any neighbour can be from
any vertex. So, by using /max elements, plus one element for the label of the current
vertex (there may be multiple vertices with this label), we can limit the size of the
pointer array to lin. + 1 elements. By subtracting the label of the current vertex from
the label of the vertices which are visited, the address in the array of the new vertex

V3 (28)

v6 (32) 	 vs (30)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

Fig 12.6.

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

Fig. 12.7.

130 131

(33)

(34)

(35)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

Fig. 12.9.

12.2.5. Address calculation with buckets

can be calculated. Note that in a discrete network, the maximum distance any
neighbour can be from any vertex, is the maximum edge length plus the maximum
wait time (the difference between the start and end values).

Suppose that in our example, lmax is 10. So, we need 11 elements for the pointer
array. Before v0 is removed, the frontier looks as in fig. 12.8. After v0 has been
removed the frontier looks as in fig. 12.9, after vi0 has been added it looks as in fig.
12.10.

(33)

(34)

(35)

(36)

(37)

(27)

(28)

(29)

(30)

(31)

(32)

Fig. 12.10.

When the pointer array used in address calculation is very large (because of a
large 	the array may be sparsely filled. In that case it may be time consuming to
find the first non-empty element. It may then be useful to split the array into
segments or buckets. A bucket is a range of elements of the pointer array. When any
element in the range of a bucket is non-empty, than that bucket is marked
non-empty. To indicate whether a bucket is empty or not we use an array, each
element representing a bucket. When searching for the first non-empty element of
the pointer array, we first search for the first non-empty bucket, and then for the first
non-empty element in the range of the bucket. For the bucket structure, we need an
extra array of length (lmax + 1)/w, where w is the range of the bucket (the bucket
width).

132

12.3. Implementation of TRAINS

For the representation of the railway service network in TRAINS, we use an
adapted version of a sorted forward star. The edges in the forward star are ordered
on start vertex, then on end vertex, then on length, and then on start value. This
approach was chosen because in the algorithm for searching discrete dynamic
network we repeatedly have to find all relevant edges from one vertex to a
neighbour, given a certain arrival time. Since all edges are sorted on length (travel
time), the length of a group of edges is stored only once, and of each edge only the
start value is stored. The end value can be computed by adding the length to the start
value. This way, storage space is saved. For example, the table containing all trains
from Hlm to Ass departing between 5:00 and 9:00 looks as follows:

Illm -> Ass 9 5:19 4804
7:07 5410
7:25 4812
7:36 5412
7:57 4814
8:06 5414
8:18 5014
8:25 4816
8:37 5416

Ass 10 6:42 923
6:53 4810
7:12 825
7:18 5010
7:41 927
7:48 5012
8:12 829
8:42 931
8:50 5016
8:57 4818

Ass 11 5:45 4806
Ass 13 6:23 4808

First the departures and the identification numbers of the trains from Hlm to Ass
with a travel time of 9 minutes are listed, then the trains from Hlm to Ass with a
travel time of 10 minutes, then one train with a travel time of 11 minutes, and finally
one with a travel time of 13 minutes.

For the implementation of the frontier we have chosen circular address
calculation. Since elements are added to the frontier very frequently, an efficient

133

determination of its place in the frontier is important. For reasons of future
applications including airline schedules, we have chosen a frontier size of 24:00
(which serves as an upper bound for the maximum travel and wait time for any
connection).

13. TRAINS, An Active System

TRAINS is an implemented system which helps users find the fastest or most
convenient train connections from any one station to any other station within The
Netherlands. The entire Dutch railway services network is known to TRAINS,
including special trains, connection times, restrictions, etc. TRAINS is currently
being used at telephonic information centers of the Dutch railway company NS
(Nederlandse Spoorwegen), and was recently introduced to the general public. Since
TRAINS was intended to run on a personal computer, and had to be a complete
system with a high performance, standard programming tools instead of tools such as
fourth generation (database) languages or expert system shells were used to build
TRAINS. Apart from a user friendly user-machine interface, TRAINS has an active
component supplying useful alternate solutions in addition to the first and most
apparent answer to the user's question. A "common sense" user model helps to select
relevant information. The active component contributes significantly to the system,
which is now highly valued by its users and well suited for everyday use. This chapter
is largely similar to [Tu, 1989].

13.1. The theory of active systems: discontinuities

The theory of active systems was first described in [Si, 1978]. A good review of
active systems can be found in [Wa, 1985]. The theory of active systems is based on
discontinuities : a small change in the question may yield a large favourable change
in the answer. It is easily seen that the domain of TRAINS, namely passenger
transportation by train, exhibits discontinuities. It may be that a slow train with a
travel time of 30 minutes departs at 10:00, while at 9:55 some very fast train with a
travel time of 15 minutes leaves. So, a change of 5 minutes in the question (from a
departure at 10:00 to a departure at 9:55) will give a change of 15 minutes in the
answer (from 30 to 15 minutes in travel time). The metrics in both the question
(what is "small") and the answer (what is "better") are user dependent.

134 	 1 	 135

13.2. The necessity of active behaviour

A user of a question-answering system seldom has a perfectly well-defined
question, and seldom is this question definite. A precise question is posed because it
is required. Indeed, we suspect that users usually overspecify their questions partly
due to habit, partly due to requirements of the system. A system must have an exact
value to work with, so the user gives some value which she thinks is a reasonable one.
Given sufficient motivation, such as an answer which suits her better, she may
change her question. Even if she chooses not to, the information should be provided
so that the user can make a decision based on sufficient relevant information. In our
implementation of TRAINS, we have assumed that the user does not know exactly
when she wants to leave or arrive until she has seen the exact possibilities, which the
system should provide.

133. The dimensions of a topic

The original definition of the theory of active systems states that a system should
provide additional information when, and only when, a small change in the question
results in a large positive change in the answer. But what is a small change in the
question? And what is a positive change in the answer? And when is this change a
large change? There may be many aspects of an answer which may influence the
decision whether a change is positive or not, or whether it is a large or small
improvement. These aspects are the attributes of the topic. Each of these attributes
can be called a dimension of the topic. With this concept of a topic having multiple
dimensions, a question and an answer can be viewed as points in a multi-dimensional
space of possibilities.

In TRAINS, the topic is travel by train. The possible dimensions include the
total travel time, the exact time of departure, the exact time of arrival, the number of
train changes, the service available on the train (such as a dining car or the
availability of a telephone), the route of the journey (the scenery) etc. In our
implementation of TRAINS we limited the number of dimensions to the first four.

13.4. Active behaviour

In active behaviour we distinguish three phases:

(1) the subject focusing phase,
(2) the initial answer,
(3) searching for alternate solutions.

We shall now look at each phase in turn.

136

13.4.1. Subject focusing

When a user queries a question answering system, first she will formulate a
question. In a conventional question answering system the question is treated as a
precise definition of which information the user requires. In an active question
answering system, the question is treated as a loose indication of what the user wants
to know. In this phase, called the subject focusing phase, the user provides
information which determines the most important dimensions of the question.

13.4.2. The initial answer

After the user has posed the question, the system starts searching for an answer
best satisfying this initial question. This answer is given to the user. Usually this
answer is the same answer as a conventional system would give. However,
sometimes it may be best to avoid answering the initial question, and move directly
to alternate solutions.

13.43. Searching for alternate solutions

After the answer to the initial question has been given, a conventional system
stops. An active system starts "moving" the question along the most important
dimensions, looking for favourable changes in answers. If a favourable change
occurs, additional information is given to the user. Of course, this "moving" requires
efficient search. Each slight move of the question along its dimensions results in a
new question. This question needs to be answered internally in order to decide
whether it yields a favourable change.

13.5. Discontinuity conflicts

It may be that a small change in the question results in large changes in multiple
dimensions of the answer. Suppose large changes occur in two of the dimensions of
the answer: one favourable and one unfavourable. For example, an alternate trip
requires 15 minutes less travel time, but with two additional train changes. Is this a
favourable change in answer? Should it be mentioned to the user? It is not possible
to decide in general: it depends on the relative importance to the user of the
dimensions travel time and number of train changes. Sometimes, some dimensions
seem to be almost indistinguishable but there may be subtle differences in the
metric, depending on the user. Consider for instance, the dimension travel time and
the dimension time of arrival. The dimension travel time is easily measured and
valued in terms of appreciation. Usually, less travel time is a positive change, more
travel time is a negative change. But this is not the case with the dimension time of
arrival. The level of appreciation depends on secondary conditions only known to

137

the user. If a user asks for a trip arriving at 9:55, an arrival at 10:05 may be unsuitable
because she has a business appointment at 10:00. In that case an arrival at 9:40 may
be the better possibility. However, if the goal of the trip is to go shopping, and if the
shops do not open until 10:00, then the arrival at 10:05 could be perfectly acceptable.

13.6. User models

From the previous example it is seen that the metrics of the dimensions can be
very much user dependent. For one user, a change in the answer may be an
improvement, for another it may not, depending on the goal of the trip, or the level
of experience in travelling by train (changing trains etc.), or even on the character or
mood of the user. So, to be able to judge whether a change in the question is small,
whether a change in the answer is large and favourable, and to be able to resolve
discontinuity conflicts (in short: to judge whether an alternate solution is "better" or
"near" the initial solution), we need a model of the user. There are two ways of

dealing with user models:

(1) using predetermined models or user categories,

(2) building a model for each specific user.

Using predetermined user models means that during the subject focusing phase
a user is classified into a category. We could have different categories for business
travellers, students, elderly people, etc. When we build a user model for each
specific user, for each new user a new user model is built in an interactive process.

13.7. The application of TRAINS

In the application of TRAINS, a user calls an NS telephone information center
and asks for information about a trip from one station to another, giving a desired
time of departure or arrival. Usually no additional information is supplied by the
caller. There is a shortage of information, not enabling the system to classify the user
or to build a user model. Of course, more information could be asked from the user
but that would be undesirable. Most callers would not appreciate a complete
questionnaire before their question is answered (the call is not even toll free!), and
a user may become suspicious, feeling that her privacy is being invaded.

13.8. The user model in TRAINS

As we have seen in the previous section, either determining or building a user
model before searching for a solution is not practical for our application. Another
possibility might be to build the user model as we are going along. If a decision about
what is "near" or "better" is necessary, a question could be put to the user. For

example, we could ask whether she favours fewer train changes or less travel time.
But in that case, the user will probably reply that she cannot say in general and needs
to know the exact possibilities to decide. A better approach would be to give the
alternate solution right away, and ask the user whether it represents an
improvement. From her answer, her (user) model could be modified. But then, we
might just as well have given this alternate solution directly and let the user herself
judge whether it is an improvement or not, without having to communicate her
decision to the system. Of course, there is the danger of flooding her with many
possible solutions, most undesirable! In TRAINS we have found a compromise: a
rudimentary user model is implemented, incorporating some "common sense" about
what might be an improvement to a user and what not. This rudimentary user model
is sufficiently general to allow solutions which are of interest to essentially all users,
and restrictive enough to prevent flooding her with possibilities. From the solutions
suggested, she chooses the one which suits her best.

13.9. Relevant solutions

TRAINS' user model judges, for every alternate solution found, whether it may
be relevant to a user or not. Relevant solutions are communicated to the user who
decides which one is best for her. In this way, the system supplies everything likely to
be necessary for the caller to make a decision with full knowledge of sufficient
relevant information. A relevant solution is (recursively) defined as follows:

• The initial best solution is a relevant solution. If the user had given a desired
departure time, the initial best solution makes her leave at or after this desired
departure time and arrive at her destination as early as possible, with a trip of
shortest duration (given that arrival time). Notice that in this way, she will leave
as late as possible as long as she still arrives at the above earliest arrival time. (If
the user had given a desired time of arrival, the initial best solution makes her
depart as late as possible but still arrive before or at her desired arrival time, and
given this departure time, will make her arrive as early as possible. Again, the
journey has a minimal duration given the departure time). In case of ties, the route
with the fewest train changes is preferred.

• Every solution with both the time of arrival and the time of departure different
from those of another relevant solution is a relevant solution, provided that either:

Both its departure and its arrival are earlier than the corresponding values of a
relevant solution.

or
Both its departure and its arrival are later than the corresponding values of a
relevant solution.

138 	 l 	 139

Every solution with a departure equal to or earlier than, and/or an arrival equal
to or later than the corresponding values of a relevant solution, is relevant if it
has fewer train changes.

This way, first an optimal solution best satisfying the user's wishes is shown.
Then trips are shown which have different times of departure and arrival and which
are not just worse versions (in travel time) of relevant solutions already found.
Finally, solutions which are worse versions (in travel time) of relevant solutions are
shown if they have fewer train changes. These solutions exhibit discontinuity
conflicts: more travel time but fewer train changes. It is left to the user to decide.

The interval that is searched for relevant solutions is determined by applying an
heuristic formula taking into account such facts as the duration of the initial best
solution, the amount of time the initial best solution differs from the user's question,
etc. As a rule, always at least one alternate solution before and one after the initial
best solution is given. To prevent too many alternate solutions, at most three
time-different relevant solutions (see the second clause of the definition of relevant
solutions) before and three after the initial best solution are given, and in addition,
per initial best solution and time-different relevant solution, one non-time-different
relevant solution with fewer train changes is allowed (see the third clause of the
definition of relevant solutions).

13.10. An example

For an example (taken from the 1990/1991 NS service), suppose we want to
travel from Hengelo (Hgl, see fig. 13.1) to Maastricht (Mt), departing at or after
9:00. There are four routes possible:

(1) via Almelo (Anil), Deventer (Dv), Amersfoort (Amf), Utrecht (Ut), 's
Hertogenbosch (Ht), Eindhoven (Ehv), Roermond (Rm) and Sittard (Std),
covering a (tariff) distance of 310 km,

(2) via Anil, Dv, Zutphen (Zp), Arnhem (Ah), Nijmegen (Nm), Venlo (Vl), Rm and
Std, covering a (tariff) distance of 247 km,

(3) via Goor (Go), Zp, Ah, Nm, Vl, Rm and Std, covering a (tariff) distance of 223
km.

(4) via Go, Zp, Ah, Nm, Ht, Ehv, Rm and Std, covering a (tariff) distance of 266 km.

If our traveller wants to leave at 9:00, we look in the neighbourhood of 9:00 and find
the following trip possibilities:

Fig. 13.1. The Dutch railway service network

141 140

Departure Arrival Time Dist. Changes Route Relevant
(1) 8:06 12:04 3:58 247 Dv, Nm, Rm (2)
(2) 8:06 12:04 3:58 310 Ut (1)
(3) 8:36 12:41 4:05 310 Amf, Ut, Std (1)
(4) 8:45 12:41 3:56 266 Zp, Ht, Std (4)
(5) 8:45 12:41 3:56 223 Zp, Ah, Rm (3)
(6) 9:06 13:04 3:58 310 Ut (1)
(7) 9:06 13:04 3:58 247 Dv, Nm, Rm (2)
(8) 9:36 13:41 4:05 310 Amf, Ut, Std (1)
(9) 9:45 13:41 3:56 223 Zp, Ah, Rm (3)

(10) 9:45 13:41 3:56 266 Zp, Ht, Std (4)
(11) 10:06 14:04 3:58 310 Ut (1)
(12) 10:06 14:04 3:58 247 Dv, Nm, Rm (3)

Of these 12 possible solutions only 5 are relevant. Possibility (6) is the initial best
solution. Solution (7) is rejected because it departs and arrives at the same times as
the initial best solution, but has more train changes.

Searching before the initial best solution, solution (5) is found and accepted.
Solution (4) is rejected because it departs and arrives at the same times as (5), and has
the same number of train changes. Solution (3) is rejected because it departs earlier
than (4), but arrives at the same time with an equal number of train changes. Solution
(2) is found and accepted. Solution (1) is rejected because it departs and arrives at the
same times as solution (2), but has more train changes.

Searching after the initial best solution, solution (9) is found and accepted.
Solution (8) is rejected because it departs earlier than (9), arrives at the same time
and has the same number of train changes. Solution (10) is rejected because it departs
and arrives at the same times as (9), with the same number of train changes. Solution
(11) is found and accepted. Solution (12) is found and rejected, because it departs and
arrives at the same times as (11), but has more train changes.

If one asks TRAINS for advice on travelling from Hengelo to Maastricht,
departing at 9:00, solutions (2), (5), (6) and (9) are suggested. Solution (11) is not
given since it departs outside the interval considered for alternate solutions (in this
example all departures between 8:00 and 10:00). For more examples of TRAINS'
active behaviour see chapter 14, Results.

142

14. T A NS, Results

In this chapter we shall look at some examples obtained from the TRAINS
system. We shall look at the effects of the techniques described in the previous
chapters by examining four example questions. We shall also look at the practical
advantages of the TRAINS system. For the examples we make use of the TRAINS
system as it was first sold as an official NS (Nederlandse Spoorwegen; Dutch
Railways) product ("NS Reisplanner", NS Travel Planner), in May 1990.

14.1. The program

The program was written in the C programming language (ANSI standard), and
consists of approximately 10 000 lines of code, divided into 7 modules. The program
was developed using a prototyping method. The development of the system
(including the programs providing interfaces to existing database systems) took
about 4 man years. The first professionally used prototype was released in May 1988.
The program was first released commercially in May 1990. The program is currently
(September 1990) running on Atari ST, IBM PC (MS DOS), and UNIX computer
systems.

14.1.1. The techniques used

The (discrete dynamic) network representation of chapter 5 is used to represent
the railway service network. The algorithm used to search the network is an
implementation of the algorithm described in chapter 6. SRM has been
implemented as a single pass process. The loosening of the idealized solution (see
section 8.3.3), has been implemented in such a way that in practice, optimal solutions
are never missed (i.e. 'loose' enough). The coefficientp, which is used to determine
the maximum detour, is set to 0.4. The allowed detour is set to at least 20 minutes
and may not exceed 60 minutes. These figures were determined empirically. The
Idealized Skeleton Graph contains the information of the fastest trains running
between the different stations. The ISG is constructed automatically and only once
for the network and is stored together with the actual time-table information. The

143

ISG consists of about 450 stations and some 500 edges. In our implementation of
SRM we do not cut off any dead-end branches in the search space. As a result of
applying SRM, all stations in the search space have estimates of remaining travel
time. These estimates are used in an A* extension (DYNET*) as described in
chapter 9. The techniques to adapt the searching algorithm to offset vertices
described in chapter 10, were also implemented. The determination of offset
vertices is not automatic and is done by hand. The techniques described in chapter
11 are used to minimize train changes and to find suboptimal solutions with fewer

train changes.

14.2. The network

The network contains all stations, trains, ferries and buses which are published
in the official 1990 - 1991 NS time-tables (about 750 pages). Apart from all national
trains, the network also contains the most important international trains to
neighbouring countries, the most important ferries and some intercity bus links. In
total the network has 469 stations: 396 Dutch stations (both railway stations and bus
and ferry terminals) and 73 stations in neighbouring countries. Using the techniques
described in chapter 10, 235 stations could be made offset stations (vertices) and 234
stations had to be node stations. The network contains the information of over
44 000 departures. Only 27 000 departures are departures from node stations. Binary
coding techniques are used to store the network using the representation techniques
described in chapter 12. The binary representation of the network requires a storage
space of 251 820 bytes. At run-time, the entire network is kept in core memory.

143. The example questions

For the examples we shall look at four queries: one short trip, one medium trip
and two longer trips. The short trip is from Heemskerk (Hk, see fig. 14.1) to
Amsterdam CS (Asd), the medium trip from Hoorn (Hn) to Den Haag HS (Gv), the
longer trips from Den Haag CS (Gvc) to Blerick (Br) and from Vlissingen (Vs) to
Zwolle (Z1). For each query we shall look at the answers the system generates, the
estimates and search space which are determined using SRM, and how the answers
can be found using the conventional (paper) time-tables. The performance aspects
and the computational effects of SRM and DYNET* are discussed in a separate

section for all examples.

143.1. Heemskerk to Amsterdam CS

For a trip from Heemskerk to Amsterdam CS, the estimated travel time
determined in SRM is 25 minutes. The upper bound is determined to be 45 minutes:

144

the estimated travel time of 25 minutes plus the minimum detour of 20 minutes. The
search space consists of 13 node stations, 5.5 percent of the total network. The search
space is given in fig. 14.2, including the relevant offset stations.

For a trip from Heemskerk (Hk, see fig. 14.2) to Amsterdam CS (Asd) two
routes appear to be relevant: route 1 (26 tariff kilometers) via Uitgeest (Utg),
Zaandam (Zd) and Amsterdam Sloterdijk (Ass) and route 2 (35 km) via Haarlem
(Him) and Ass. For a trip departing at 8:00 the following trip possibilities are
suggested:

Departure Arrival Time Dist. Changes Route
(1) 7:27 8:05 0:38 26 Utg 	(1)
(2) 7:32 8:11 0:39 35 (2)
(3) 7:57 8:35 0:38 26 Utg 	(1)
(4) 8:02 8:41 0:39 35 (2)
(5) 8:27 9:05 0:38 26 Utg 	(1)
(6) 8:32 9:14 0:42 35 (2)

Solution (4) is the initial solution, the other solutions are suggested as alternate
solutions.

If the conventional time-tables are used to find solutions, then for a solution
using route (1), say solution (3), two tables must be used. Table 42 a (see fig. 14.3) is
used to find train 4829 from Hk to Utg, departing at 7:57 and arriving at 8:02. Then
table 40 b (see fig. 14.4) is used to find train 14718 from Utg to Asd, departing at 8:07
and arriving at 8:35. For a solution using route (2), say solution (4), only one table
needs to be used. Table 42 b (see fig. 14.5) is used to find train 4816 from Hk to Asd,
departing at 8:02 and arriving at 8:41.

14.3.2. Hoorn to Den Haag HS

For a trip from Hoorn to Den Haag HS, the estimated travel time determined
in SRM is 62 minutes. The upper bound is determined to be 87 minutes: the
estimated travel time of 62 minutes plus 40 percent. The search space consists of 33
node stations, 14 percent of the entire network. The search space is given in fig. 14.6,
including the relevant offset stations.

For a trip from Hoorn (Hn, see fig. 14.6) to Den Haag HS (Gv) two routes
appear to be relevant: route 1 (97 km) via Purmerend (Pmr), Zaandam (Zd),
Amsterdam Sloterdijk (Ass), Haarlem (Him), Leiden (Ledn) and route 2 (105 km)
via Pmr, Zd, Ass, Amsterdam CS (Asd), Schiphol (Shl) and Ledn (the detour from

145

Ass to Asd is necessary since the intercity train from Asd to Gv via Shl does not stop
at Ass). For a trip departing at 9:00 the following trip possibilities are suggested:

Departure Arrival Time Dist. Changes Route
(1) 8:15 9:41 1:26 105 Asd (2)
(2) 8:37 9:56 1:19 97 Ass (1)
(3) 8:45 10:11 1:26 105 Asd (2)
(4) 9:07 10:26 1:19 97 Ass (1)
(5) 9:37 10:56 1:19 97 Ass (1)

Solution (4) is the initial solution, the other solutions are suggested as alternate
solutions. Note the absence of a trip possibility at 9:15 and 9:45. The solutions at :15
and :45 are only possible in the early rush hours due to extra trains.

If the conventional time-tables are used to find solutions, then one is easily
deceived by the layout of the time-tables. Amongst others, for the relation Hn - Gv
connections via Alkmaar (Amr, see fig. 14.6), Beverwijk (Bv), Hlm and Ledn, are
listed in table 41 b. However, all the listed connections from Hn to Gv are
suboptimal! Let us consider the case of a departure at 9:00. Then table 41 b (see fig.
14.7) lists a connection departing at 9:05 (train 5539) and arriving at 10:41, changing
to train 2139 at Ledn. By using two different tables, however, it is possible to find
solution (4), which departs 2 minutes later and arrives 15 minutes earlier, also with
one train change! For finding this solution, using route (1), table 40 b (see fig. 14.8)
is used to find train 4522 from Hn to Ass, departing at 9:07 and arriving at 9:38. Note
that since Hn is listed three times in table 40 b, and the lowest entry needs to be used,
it is not easily found. Especially since the 9:05 train (5539) is also listed, but at the
top. Then table 10 a (see fig. 14.9) is used to find train 5439 from Ass to Gv,
departing at 9:45 and arriving at 10:26. For a solution using route (2), say solution
(3), table 40 b (see fig. 14.10) is used to find train 14522 from Hn to Asd, departing
at 8:45 and arriving at 9:18. Then table 10 a (see fig. 14.9) is used to find train 159
from Asd to Gv, departing at 9:26 and arriving at 10:11.

14.33. Den Haag CS to Blerick

For a trip from Den Haag CS to Blerick, the estimated travel time determined
in SRM is 110 minutes. The upper bound is determined to be 154 minutes: the
estimated travel time of 110 minutes plus 40 percent. The search space consists of
101 node stations, 43 percent of the entire network. The search space is given in fig.
14.11, including the relevant offset stations.

For a trip from Den Haag CS (Gvc, see fig. 14.11) to Blerick (Br) three routes
appear to be relevant: route 1 (190 km) via Zoetermeer (Ztm), Gouda (Gd),

146

Utrecht CS (Ut), 's-Hertogenbosch (Ht), Eindhoven (Ehv), route 2 (181 km) via
Rotterdam CS (Rtd), Dordrecht (Ddr), Breda (Bd), Ehv and route 3 (196 km) via
Ztm, Gd, Ut, Arnhem (Ah), Nijmegen (Nm). For a trip departing at 9:00 the
following trip possibilities are suggested:

Departure Arrival Time Dist. Changes Route
(1) 7:59 10:38 2:39 181 (2)
(2) 8:19 10:38 2:19 190 Ut, Ehv (1)
(3) 8:35 11:16 2:41 196 Ut, Ah (3)
(4) 8:59 11:38 2:39 181 (2)
(5) 9:19 11:38 2:19 190 Ut, Ehv (1)
(6) 9:35 12:16 2:41 196 Ut, Ah (3)

Solution (5) is the initial solution, the other solutions are suggested as alternate
solutions. Note that solution (1) and (4) are suboptimal alternate solutions with
fewer train changes to solutions (2) and (5) respectively.

If the conventional time-tables are used to find solutions, then for a solution
using route (1), say solution (5), three tables must be used. Table 30 a (see fig. 14.12)
is used to find train 2833 from Gvc to Ut, departing at 9:19 and arriving at 10:01.
Then table 20 a (see fig. 14.13) is used to find train 833 from Ut to Ehv, departing at
10:04 and arriving at 10:57. Table 50 a (see fig. 14.14) is used to find train 1933 from
Ehv to Br, departing at 10:59 and arriving at 11:38. For a solution using route (2), say
solution (4), only one table needs to be used. Table 50 a (see fig. 14.14) is used to find
train 1933 directly from Gvc to Br, departing at 8:59 and arriving at 11:38. Note that
this train is spread across two colunms without changing trains! For a solution using
route (3), say solution (3), table 30 a (see fig. 14.15) is used to find train 529 from Gvc
to Ut, departing at 8:35 and arriving at 9:17, and to find the connecting train 2929
from Ut to Ah, departing at 9:20 and arriving at 9:55. Table 51 a (see fig. 14.16) is
used to find train 6235 from Ah to Br, departing at 10:06 and arriving at 11:16 (the
11:17 listed in this table is in fact the departure time of this train from Br; the
TRAINS system uses the NS database which contains both the time of arrival and the
time of departure at a station).

14.3.4. Vlissingen to Zwolle

For a trip from Vlissingen to Zwolle, the estimated travel time determined in
SRM is 170 minutes. The upper bound is determined to be 230 minutes: the
estimated travel time of 170 minutes plus the maximum detour of 60 minutes. The
search space consists of 109 node stations, 46 percent of the entire network. The
search space is given in fig. 14.17, including the relevant offset stations.

147

Departure Arrival Time Dist. Changes Route
(1) 11:20 14:46 3:26 276 Rsd, Rtd, Amf (1)
(2) 11:20 15:10 3:50 280 Rsd (2)
(3) 11:56 15:14 3:18 276 Rtd (1)
(4) 12:20 15:46 3:26 276 Rsd, Rtd, Amf (1)
(5) 12:20 16:10 3:50 280 Rsd (2)
(6) 12:56 16:14 3:18 276 Rtd (1)

Solution (4) is the initial solution, the other solutions are suggested as alternate
solutions. Note that solution (2) and (5) are suboptimal alternate solutions with
fewer train changes to solutions (1) and (4) respectively.

If the conventional time-tables are used to find solutions, then again the layout
may be somewhat deceiving. For the relation Vs - Zl connections via route (2) are
listed in table 60 b (see fig. 14.18). However, only some of the listed connections
from Vs to Zl are suboptimal solutions with fewer train changes at best! Let us
consider the case of a departure at 11:50. Then table 60 b (see fig. 14.18) lists a
connection departing at 11:56 (train 2140) and arriving at 15:43, changing to train
4646 at Rsd. By using two different tables, however, it is possible to find solution (3),
which departs at the same time (using in fact, the same train from Vs), but which
arrives 29 minutes earlier, also with one train change! For finding this solution, using
route (1), table 10 b (see fig. 14.19) is used to find train 2140 from Vs to Rtd,
departing at 11:56 and arriving at 13:32. Then table 80 a (see fig. 14.20) is used to find
train 549 from Rtd to Zl, departing at 13:39 and arriving at 15:14. For a solution
using route (2), say solution (5), table 60 b (see fig. 14.18) is used to find train 14648
from Vs to Rsd, departing at 12:20 and arriving at 13:19. Then the same table is used
to find train 4648 from Rsd to Zl, departing at 13:25 and arriving at 16:10. Note that
solution (6) departs 36 minutes later while it arrives only 4 minutes later.
Furthermore solution (4) departs at the same time, but arrives 24 minutes earlier,
requiring 2 more train changes (this solution can be found by using table 10 b for the
part Vs - Rsd - Rtd and table 80 a for the part Rtd - Amf - Z1).

148

14.4.1. Computational effects

In order to measure the effects of SRM and DYNET* we shall look at the
amount of computation it took to find the initial solution of the four examples from
the previous sections. The amount of computation is measured by the number of
paths which became branching paths in step (3) of both the forward and the
backward pass of the algorithm to search discrete dynamic networks (see section
6.6), and by the number of partial paths which were put in the frontier F in step (5).
For each solution, we measured the computational effort, both with and without the
SRM and DYNET* techniques.

First we consider the amount of computational effort necessary to find the
fastest (initial) solution, without searching for an alternate suboptimal solution with
fewer train changes. For the example Heemskerk to Amsterdam CS the results are:

Techniques used branch paths fwd branch paths bkwd paths in frontier
DYNET 6 5 23

SRM + DYNET 6 5 21
DYNET* 4 5 20

SRM + DYNET* 4 5 18

For the example Hoorn to Den Haag HS the results are:

Techniques used branch paths fwd branch paths bkwd paths in frontier
DYNET 33 6 79

SRM + DYNET 22 6 39
DYNET* 11 6 44

SRM + DYNET* 11 6 39

For the example Den Haag CS to Blerick the results are:

Techniques used branch paths fwd branch paths bkwd paths in frontier
DYNET 179 12 261

SRM + DYNET 129 12 168
DYNET* 61 9 153

SRM + DYNET* 61 9 136

149

14.4. Performance For a trip from Vlissingen (Vs, see fig. 14.17) to Zwolle (Z1) two routes appear
to be relevant: route 1 (276 km) via Roosendaal (Rsd), Rotterdam CS (Rtd), Gouda
(Gd), Utrecht CS (Ut) Amersfoort (Amf) and route 2 (280 km) via Rsd, Breda (Bd),
's-Hertogenbosch (Ht), Nijmegen (Nm), Arnhem (Ah), Zutphen (Zp). For a trip
departing at 12:00 the following trip possibilities are suggested:

In this section we shall look at the performance aspects of the algorithms used
in TRAINS. First we shall look at the computational effects of the different
techniques used, and then at the time requirements. The examples from the previous
sections will be used.

For the example Vlissingen to Zwolle the results are:

Techniques used branch paths fwd branch paths bkwd paths in frontier
DYNET 157 11 227

SRM + DYNET 129 11 176
DYNET* 27 11 105

SRM + DYNET* 27 11 103

We now consider the amount of computational effort necessary to find not only
the initial solution, but also (if possible) an alternate suboptimal solution with fewer
train changes (using the techniques described in chapter 11). For the example
Heemskerk to Amsterdam CS the results are:

Techniques used branch paths fwd branch paths bkwd paths in frontier
DYNET 5 7 42

SRM + DYNET 5 7 35
DYNET* 4 6 40

SRM + DYNET* 4 6 33

For the example Hoorn to Den Haag HS the results are:

Techniques used branch paths fwd branch paths bkwd paths in frontier
DYNET 36 7 149

SRM + DYNET 26 7 68
DYNET* 19 7 97

SRM + DYNET* 19 7 88

For the example Den Haag CS to Blerick the results are:

Techniques used branch paths fwd branch paths bkwd paths in frontier
DYNET 303 14 484

SRM + DYNET 208 14 286
DYNET* 129 10 371

SRM + DYNET* 128 10 325

For the example Vlissingen to Zwolle the results are:

Techniques used branch paths fwd branch paths bkwd paths in frontier
DYNET 216 46 411

SRM + DYNET 192 46 326
DYNET* 49 32 281

SRM + DYNET* 49 32 269

150

14.4.1.1. DYNET* versus SRM

From these figures it can be seen that the DYNET* extension is most important
for reducing the search necessary to find solutions. SRM is less effective than
DYNET* in reducing the number of branching paths. When DYNET* is used, SRM
does not much reduce the number of branching paths further. This is not surprising
since both SRM and DYNET* use the same information about estimates of
remaining travel time, and since the upper limit estimate used in SRM is much
coarser than the combination of actual time and estimates in DYNET*, which
gradually gains more actual time information during search, and has to rely on
estimates less and less. However, SRM does reduce the number of paths that are
developed and put in the frontier, but which are never made a branching path. SRM
prevents the development of paths which DYNET* would develop, put in the
frontier, and successively deem unpromising. Furthermore, because of the (guided)
depth first nature of DYNET*, relabeling occurs more often. In our implementation,
relabeling means that a new path has to be added to the frontier. Therefore,
DYNET* may require more paths to be put in the frontier. This is especially clear in
the example Hoorn to Den Haag HS.

14.4.1.2. Limiting the backward search

It can be seen from the results that the techniques used to limit the (second)
backward search by using information from the (first) forward search (see chapter
4), are very effective in case of a more complex question. With less complex
problems, SRM and DYNET* do not further improve the second pass much. The
accurate information from the first pass replaces the much coarser estimates used in
SRM and DYNET*.

14.4.2. Time requirements

We now look at the time requirements and savings of the different techniques.
For each example problem we have measured the amount of time that is required to
compute the SRM search space and the amount of time that is required to compute
estimates for DYNET* for the entire network. If SRM is used, for all vertices in the
search space the estimates for DYNET* are generated as a side effect and the
DYNET* computation does not need to be performed. Furthermore we have
measured the time that is required to find the initial solution and the time to find all
solutions necessary to completely answer a user's question. Note that more solutions
may be found than those which are actually suggested to the user. For each example
the required time is measured both with and without making use of the SRM and

151

Techniques used first solution all solutions
DYNET 1.49 6.51

SRM + DYNET 1.04 4.85
DYNET* 0.68 2.77

SRM + DYNET* 0.62 2.63

152

DYNET* techniques. Only the pure searching time is measured, not including the
time required for input and output. The measurements were performed on an Atari
ST computer with an 8 Mhz Motorola MC 68000 micro processor, using a 200 Hz
system timer.

First we consider the time required to find only the fastest solutions, without
also searching for suboptimal solutions with fewer train changes.

For the example Heemskerk to Amsterdam CS it took 0.19 seconds to compute the
DYNET* estimates for the entire network, and 0.05 seconds to compute the SRM
search space. Note that, since SRM also determines the DYNET* estimates for the
vertices in the search space, if SRM is applied, the DYNET* estimates do not have
to be computed for the entire network. The other results are (in seconds):

Techniques used first solution all solutions
DYNET 0.10 2.52

SRM + DYNET 0.09 1.00
DYNET* 0.08 1.00

SRM + DYNET* 0.08 0.85

For the example Hoorn to Den Haag HS it took 0.19 seconds to compute the
DYNET* estimates and 0.10 seconds to compute the SRM search space (including
the DYNET* estimates for the vertices in the search space). The other results are (in
seconds):

Techniques used first solution all solutions
DYNET 0.41 5.30

SRM + DYNET 0.28 2.15
DYNET* 0.24 1.82

SRM + DYNET* 0.22 1.65

For the example Den Haag CS to Blerick it took 0.19 seconds to compute the
DYNET* estimates and 0.17 seconds to compute the SRM search space (including
the DYNET* estimates for the vertices in the search space). The other results are (in
seconds):

For the example Vlissingen to Zwolle it took 0.19 seconds to compute the DYNET*
estimates and 0.17 seconds to compute the SRM search space (including the
DYNET* estimates for the vertices in the search space). The other results are (in
seconds):

Techniques used first solution all solutions
DYNET 1.36 9.00

SRM + DYNET 1.15 6.85
DYNET* 0.49 3.17

SRM + DYNET* 0.48 3.06

We now consider the time required to find not only the fastest solutions, but also
(if possible) suboptimal solutions with fewer train changes (using the techniques
described in chapter 11). For the example Heemskerk to Amsterdam CS the results
are (in seconds):

Techniques used first solution all solutions
DYNET 0.17 6.21

SRM + DYNET 0.15 1.79
DYNET* 0.16 2.13

SRM + DYNET* 0.15 1.68

For the example Hoorn to Den Haag HS the results are (in seconds):

Techniques used first solution all solutions
DYNET 1.14 13.35

SRM + DYNET 0.77 5.72
DYNET* 0.87 5.19

SRM + DYNET* 0.83 4.49

For the example Den Haag CS to Blerick the results are (in seconds):

Techniques used first solution all solutions
DYNET 6.64 23.56

SRM + DYNET 4.08 16.99
DYNET* 3.17 10.70

SRM + DYNET* 2.99 10.25

For the example Vlissingen to Zwolle the results are (in seconds):

153

Techniques used first solution all solutions
DYNET 4.79 27.80

SRM + DYNET 4.14 22.05
DYNET* 1.91 9.75

SRM + DYNET* 1.85 9.40

From the measurements it can be seen again that the DYNET* extension using
the fastest train estimates is most effective in reducing running times. With less
complex problems, applying SRM with the determination of both the search space
and the DYNET* estimates for the vertices in the search space, is more efficient
than the determination of the DYNET* estimates for the entire network only. In
fact, determining the SRM search space with DYNET* estimates is never less
efficient than determining the DYNET* estimates for the entire network. When
only one solution is required, in case of a medium to complex problem the
investment of applying SRM is returned when searching. When multiple solutions
are required, applying SRM is always more efficient than not applying SRM. When
DYNET* is used in combination with SRM the running times can be as much as
three times faster. Note that in our implementation of SRM, we do not cut off the
dead-end branches in the search space. If these branches would be cut off, then the
performance of SRM might be improved.

Fig. 14.1. The Dutch railway service network

155

5512 723
4829

48211 	5321
4823

5004 	4825
5425

a
km treinnummer 21081A, 55101 	22411A, 176

5427 	 4827 	5429

%.4 > vervolg >
km treinnummer 2245 ik 842

4855

	

5457 	751 k 944

	

k 5540 	4857
5455 747 	940

4853
5459 1653

4859 k 5538 k 5542

Lk 924 	5439
'k 5522

k 928 k 830 1633 735 5443 1637
k 5526 4839 4841 4843

k 826 5447
'1.k. 5524

1 Boottrein London X;
met op 25 en 26 dec

niet op 23, 25 26 en 30 dec, 31 mrt, 28 apr
en 19 mei

Fig. 143. Fig. 14.2. The search space for Hk - Asd

156 157

Schiphol * 552 A 620 R 635 646 705
A'dam Sloterdlik 	A 6 04 A 6 32 6 49 6 57 7 19

0 Amsterdam CS A 5 39 6 07 A 6 19 6 35 R 6 52 7 09 7 19
4 A'dam Sloterdijk 	A 5 44 c 	6 12 6 23 (6 40 (6 57 7 14 7 24
4 Amsterdam Sloterdijk 5 44 (6 12 6 23 (6 40 (6 57 7 14 7 24

19 Haarlem 	 A A 5 57 6 23 A 6 35 R 6 50 R 7 07 7 24 7 34
19 Haarlem 5 35 A 6 07 R 6 39 A 6 59 7 09 7 30 cv 	

cr,

0
)
 cr 	

U
)

N
N
N
N
N

22 Bloemendaal 5 38 6 10 6 42 12 7
24 Santpoort Zuid 5 41 6 13 6 45 7 15
26 Santpoort Noord 5 43 6 15 6 47 7 17
26 Driehuis 5 45 6 17 6 49 7 19
32 Beverwijk 	 A 5 49 6 21 6 53 7 08 7 23 7 39
32 Beverwijk 5 50 6 22 6 54 7 09 7 24 7 40 7 54
35
38

Heemskerk
Uitgeest 	 A

5
5

53
58

6
6

25
30

6
7

57
02 I

7
7

27
32 I

7
8

57
02

4cJ a > vervolg >
km1 treinnummer

Schiphol *
Adam Sloterdijk A

9
9

35
49

10
10

05
19

10
10

35
49

0
4

Amsterdam CS
A'dam Sloterdijk A

9
9

35
40

9 40
9 45

9
9

52
57

10
10

04
09

70
10

10
15

10
10

22
27

10
10

34
39

10 40
10 45

10
10

52
57

11
11

04
09

4 Amsterdam Sloterdijk 9 41 9 45 9 57 10 10 70 15 10 27 10 40 10 45 10 57 11 10
19 Haarlem 	 A 9 52 955 10 07 10 21 10 25 10 37 10 51 10 55 11 07 11 21
19 Haarlem 10 01 10 09 10 30 10 39 R11 01 11 09
22 Bloemendaal 10 12 10 42 11 12
24 Santpoort Zuid 10 15 10 45 11 15
26 Santpoort Noord 10 17 10 47 11 17
26 Driehuis 10 19 10 49 11 19
32 Beverwijk A 10 10 10 23 10 39 10 53 11 	10 11 23
32 Beverwijk 10 11 10 24 10 40 10 54 11 	11 11 24
35
38

Heemskerk
Uitgeest A I

10
10

27
32

10
11

57
02 I

11
11

27
32

Schsphol *
Adam Sloterdijk A

13
13

05
19

73
73

35
49

14
14

05
19

74
14

35
49

0
4

Amsterdam CS
Adam Sloterdijk A

13
13

23
28

13
13

34
39

13 40
13 45

13
13

52
57

14
14

04
09

14
14

10
15

14
14

22
27

14
14

34
39

14
14

40
45

14
14

49
54

4
19

Amsterdam Sloterdijk
Haarlem 	 A

13
13

28
38

13
13

40
51

13 45
13 55

13
14

57
07

14
14

10
21

14
14

15
25

14
14

27
37

14
14

40
51

14
14

45
55

14
15

55
05

19
22
24
26
26
32

Haarlem
Bloemendaal
Santpoort Zuid
Santpoort Noord
Driehuis
Beverwijk A

13
13
13
13
13
13

39
42
45
47
49
53

81401

 14 10

14
14
14
14
14
14

09
12
15
17
19
23

14

14

30

39

14
14
14
14
14
14

39
42
45
47
49
53

515

15

01

10

15
15
15
15
15
15

09
12
15
17
19
23

32
35
38

Beverwijk
Heemskerk
Uitgeest A

13
13
14

54
57
02

14 11 14
4

114

24
27
32

14

I

40 14
14
15

54
57
02

15 11 15
15
15

24
27
32 0 0,

° 	o °

Utg Hk
zd

Hlm As Asd "
° 	.

0 	00°

0 	 °

k 5529 IA 5531 4814 5414 4, 5533 4816 5416
5412 718 5035 1620 5037

42 b
9311 	5016 k 9271 5012

A•■ 2131 	5033
k) 8291 5014

7 48

7 52

2 8 02

8 06 8 12
8 15 8 22

815 8 23
821 8 29

1491 835
A 8 47

8 23

8 23

2 8 33

8 37 8 42
8 46 8 52

8 47 8 53
8 53 8 59

851
El 9 03

k 5543 4 8451 4826
730 5426

4830 k 5547
734 	5430

A 5545 k 943
5428

I 8411 4828
2240

Liki 837 	48241'k 5541 k 939
1628 	5424

Fig. 14.4. Fig. 14.5.

158 159

4.0 b > vervolg >

treinnurnmer A 5531
5033

4-, 2716

14

4516
718

1827

14518
5035

4716
Lk, 	829

k 2616
7329

14718 k 5533 ki 2620 k 2718

Hoorn 2 7 00 2 7 35
Obdam 7 10 7 45

Den Helder 2 6 52 7 05 H 7 28
Den Helder Zuid 6 56 7 09 724 7 32
Anna Paulowna 7 03 7 17

1720

7 30 7 38
Schagen 7 11 7 25 7 37 7 46
Heerhugowaard 7 16 7 19 7 35 751 7 55

Heerhugowaard 7 16 7 20 7 36 751 7 55
Alkmaar Noord 7 21 7 25 7 42 7 56 8 00
Alkmaar 7 25 7 29 7 46 8 00 8103

Alkmaar 7 31 7 34 2 7 37 7 48 8 05 8 08
Heiloo 7 43 7 54
Castricum 7 39 7 44 7 49 801 8 13 8 17
Uitgeest A 2 7 54 2

Uitgeest 7 54 8 07
Krommenie-Assendelft 7 59 8 11
Wormerveer 8 02 8 14
Koog-Zaandijk 8 06 8 17
Koog Bloemwijk 8 09 8 19

Enkhuizen 2 7 08 7 19
Bovenkarspel Flora 7 11 7 22
Bovenkarspel-Gr. 7 13 7 26
Hoogkarspel 7 19 7 32
Hoorn Kersenboogerd 7 26 7 40
Hoorn A 7 30 7 44

Hoorn 7 34 7 45
Purmerend Overwhere 7 46
Purmerend 7 49
Zaandam Kogerveld 7 56

Zaandam A 7 59 813 8 16 8 23

Zaandam 8 00 8 14 817 8 23
Amsterdam Sloterdijk A 8 03 8 06 812 8 20 8 23 8 29 8 34

Amsterdam Sloterdijk 8 04 8 07 812 821 8 24 8 29 8 34
Amsterdam CS A 2 8 10 2 8 13 8 18 2 8 27 8 30 8 35 8 40

Amsterdam Sloterdijk (Al 8 06 8 14 8 35
Schiphol .4 A 8 18 8 27 8 47

Amsterdam CS 8 19 8 32 835
Amsterdam Amstel 827 8 40 844
Utrecht CS A 8 47 9 00 9 10

El naar Amsterdam CS 	 H niet op 23, 25 26 en 30 dec, 31 mrt, 28 apr
(zie enkele kolommen verder) 	 en 19 mei

> zie vervolg >

AA
801
8 72

Ui
He
Be

Be
Dr
SN
SZ
81
Ha

Ha
AS

AS
AC

AS
Sc

7 18

7 22

2 7 32

• 7 36
7 45

7 45
• 751

2 7 29
7 32
7 35

7 36
7 40
7 42
7 45
7 48
7 52

748 757
7 58 	8 06

7 58 	8 06
8 04 2 8 11

8 06 	8 74
8 18 	8 27

8 18
8 27

8 28
8 34

7 59
8 02
8 05

06
10
12
15
18
22

8 25
8 34

8 35
841

8 44
8 58

8 50

A

9 00

9 00
9 05

2 741
751

(7 52
2 7 58

13 52

13 52

14 02

14 12 14 06
14 15 14 22

74 15 14 23
14 27 14 29

11 14
10 58 11 27

• 5555 A., 853 IA 5557 IA 955 4840
5438 1644 5440

14 22

13 59 2
14 02
14 05

5Z
 1
10 22

10 22

10 32

14 06 	14 22
14 10
14 12
14 15
14 18
14 22 214 32

14 44
74 58

10 59
I

11 29
11 02 " 11 32

10 52 11 05 11 22 11 35
10 52 11 06 11 22 11 36

11 10 11 40
11 12 11 42
11 15 11 45
11 18 11 48

11 02 11 22

11
11

44 	 12
58 	 72

14
27

4842'k 5559 A 857 	4844 ** 	5561 	A 959
746 	5442 2244 5444

14 29 14 59 2
14 32 15 02
14 35 14 52 15 05 15 22
14 36 14 52 15 06 15 22
14 40 15 10 t
14 42 15 12
14 45 15 15 t
14 48 15 18
14 52 15 02 15 22 215 32

14 55 15 06 15 12 15 25 15 37 15 42
15 04 15 15 15 22 15 34 15 46 15 52
15 05 15 15 15 23 15 35 15 47 15 53
15 11 15 21 15 29 15 41 /5 53 15 59
15 14 15 44
15 27 15 58

Ui
He
Be

Be
Dr
SN
SZ
BI
Ha

Ha
AS

AS
AC

AS
Sc

Ui
He
Be

Be
Dr
SN
SZ
BI
Ha

Ha
AS

AS
AC

AS
Sc

11 52

11 52

4846 4 5563
750 5446

15 29
15 32
15 35 	15 52

15 36 	15 52
15 40
15 42
15 45
15 48
15 52 	16 02

15 55 16 06
16 04 16 15

16 05 76 15
1611 16 21
16 14
16 27

10 12 10 25 10 36 10 42 10 55 11 06 11 12 11 25 71 36 11 42 11 55 12 06 12 12
10 22 10 34 10 45 10 52 11 04 11 15 11 22 11 34 11 45 11 52 12 04 12 15 12 22
10 23 10 35 10 45 10 53 11 05 11 15 11 23 11 35 11 45 11 53 12 05 12 15 12 23
10 29 10 41 10 51 10 59 11 11 11 21 11 29 11 41 7 7 51 11 59 12 11 12 21 12 29

14 42 14 25 14 37
14 52 14 34 14 46

14 47
14 41
14 35

14 53
14 53
14 59

9 59
10 02
10 05

10 06
10 10
10 12
10 15
10 18
10 22

10 29
10 32
10 35

10 36
10 40
10 42
10 45
10 48
10 52

41b
4726 	5343
4826
5443

10 12
10 17
10 22
10 26

10 29'
70 32
10 35

10 36
10 40
10 42
10 45
10 48
10 52

10 56
11 00
11 14

11 15

11 22
11 28
11 31
11 34

11 25

> zie vervolg >
°

Fig. 14.6. The search space for Hn - Gv

160

5041 4722
4822
5439

5339 (V 2139 N 5539 2724 4724
4824
5441

5341 N: 	160 N, 5541 N 2726

He 8 58 9 28
HZ 9 02 9 32
Al' 9 08 9 38
Sc 916 9 46
Ho 9 05 9 35
Ob 9 15 9 45
He 9 21 9 25 951 9 55
He 9 21 9 25 951 955
AN 926 930 9 56 10 00
Alk 930 9f33 10 00 10 03

r-----I
Alk 912 9 35 9 38 9 42 10 05 10 08
He
Ca

9 17
9 22 9143 43

9 43 9 47
9 52

li

10 16
Ui 9 26 9 56 1
Ui 9 29 9 59
He 9 32 70 02
Be 9 35 9 52 10 05 10 22
Be 9 36 952 1006 10 22
Dr 9 40 10 10
SN 9 42 10 12
SZ 9 45 10 75
BI 9 48 10 18
Ha 9 52 10 02 1022 Y10 32
Ha 9 56 10 09 10 26 10 39
He 10 00 10 13 10 30 10 43
Le 10 14 10127 10 44 10 57

Le A)10 08 10 16 10 18 10 30 10 32 10 46 10 48 11 00 11 02
Vi

10113 10123
10 35 1

Vo 1 10 53
11105

1
HM 10 18 10 29 10 42 10 59 11 	12
La 10 21 10 32 1 11 02 1
NC 1 10 35 10 48 11 05 11 18
HS 10 24 10 26 10 41 10 56 11 	11

13 0

161

Fig. 14.7.

10a
14724 -k 5539 -t 2724 4524

726
1835

4037 4724
a 	837

5541 'k 2726
5337 722 6339 5537 4837

1726
"-k. 	159

14631

1937 5137 cti 5537 367
.x

kiit 	924
5041

1k 2028

5439 5041

AC
AS
AV
AL
Ha

9
9
9
9

9

08
14
16
20

27

9
9

9

22
27

37

9

9

9

26

35

42

H 932

946

935
9141

952

940
9145

955

9
9

921

05
15

9
9

9

35
45

51

8 58
9 02
9 08
916
9 25

la 9 28
9 32
9 38
9 46
9 55

Ha
He

AR
AZ
Sc

Sc
Ho
NV
Le

9
9

9

39
43

57

9

10

48

05

9
10

10

10

10

56
00

14

911
9 14
921

9
9
9

26
29
36

9
9

9

9

921
26
30

9
9
9133

25
30

38
43

04 10

9
9

51
56
00

9 55
10 00
10 03 9 23

9 27
931
9 42

9 28
9 33

9 44

9 59

02

12

18

35

43

9
9

9 42
9 47
952
9 56

10

10

10

08

16

34

Le
Vi
Vo
HM
La
HC

HC
HS

9 48

9 53
9 59

10 02
10 05

10

10

00

11

10
10105

10

10

10

10

06

16

10 08
1

10 13
10 18
10 21

10 24

16

26

9

9
9
9

9

941
37

44
47

53

49 	

9
10
10
10
10

10

57
01
04
07

12

09 	

9
9
9
9
9
9

08
11
14
18
25
29

10
10

12
15

HS
Rij
De
DZ
SR
RC

10

10

12

29

33

41

50

10
10
10
10
10
10

16
20
24
27
34
39

10

10

19

36

10

10

10
10

10
10
10

27

33
1
41
46

50
53
56

10 29
10 33
10 37
10 40
10 47
10 52

9
9
9
9

10

37
48
51
58
01 Am

UC
RC

9
9

10

28
47
26

10

10

31

46

10

10

10

510 02
41 9 53

959 	
10
10

02
08 	

10 13
10 19 	

959
010 05 	

10 04
10 10

10
10

08
13 	

10 19
10 24 	

10 34
10 40

RC
RB
RZ

10
10

14
27

RL
Ba
Zw
Do

11 00
11 04
11 10
11 13

10

10

19
27
46

10
10

24
33

10 32
10 40
11 00

Do
DZ
LZ
BP
Br

10

11

48

11

10
10

11
11

51
55

08
16

11 14

11 24
11 31
11 36

Ze
Ou
Ro

Ro
BZ

11 	14
11 23

BZ
RB
Kr
KY

11 23
11 32
11 36
11 41

KB
Go

11 46
11 52

Ar
Mi
VS
VI

12 01
12 06
12 09
12 13

40 b > vervolg >

treinnurnmer 4522
1624

k 2309

4722
k 	935

Hoorn
Obdam

Den Helder
Den Helder Zuid
Anna Paulowna
Schagen
Heerhugowaard 	 A

Heerhugowaard
Alkmaar Noord
Alkmaar 	 A

Alkmaar 9 12
Heiloo 9 17
Castricum 9 22
Uitgeest 	 A 9 26

Uitgeest 9 27
Krommenie-Assendelft 931
Wormerveer 9 34
Koog-Zaandijk 9 37
Koog Bloemwijk 9 39

Enkhuizen 38
Bovenkarspel Flora 41
Bovenkarspel-Gr. 44
Hoogkarspel 48
Hoorn Kersenboogerd 55
Hoorn 	 A 59

Hoorn 9 07
Purmerend Overwhere 9 18
Purmerend 921
Zaandam Kogerveld 9 28

Zaandam 	 A 931 9 42

Zaandam 9 32 9 43
Amsterdam Sloterdijk 	A 9 38 949

Amsterdam Sloterdijk 9 38 949
Amsterdam CS 9 43 9 54

Amsterdam Sloterdijk 9 44
Schiphol 9 58

Amsterdam CS 9 49 10 02
Amsterdam Amstel 9 57 10 10
Utrecht CS 	 A 10 17 10 30

niet op 23, 25, 26 en 30 dec, 31 mr , 28 apr
en 19 mei

1 I 	I 	I
> zie vervolg >

Fig. 14.8. Fig. 14.9.

162 	 163

°

40 b
4518
1620

A. 2929

14520
5037

4718
ck) 	931

Ck 2620
7331

14720 (30 5535 AD 2720 4520
722

A, 1831

14522
4033

4720
A 	833

14722 5537 'k, 2722

Ho 8 05 ,t 8 35
Ob 8 15 8 45

He 7 58 H 8 28
HZ 8 02 8 32
AP 8 08 8 38
Sc 7 56 816 8 46
He 8 06 8 21 8 25 8 51 8 55

He 8 07 821 825 851 8 55
AN 8 14 8 26 8 30 8 56 9 00
Alk 8 18 8 30 J33 9 00 9 03

Alk 812 821 835 838 8 42 9 08
He 817 826 8 43 8 47
Ca 822 831 8 43 8 52 916
Ui 8 26 8 56

Ui 8 27 8 37 8 57 9 07
KA 831 841 901 9 11
Wo 8 34 8 44 9 04 9 14
KZ 8 37 8 47 9 07 9 17
KB 8 39 8 49 9 09 9 19

En 7 35 A 7 50 08
BF 7 38 7 53 11
BG 7 42 7 57 14
Hg 748 802 18
HK 755 810 25 8 40
Ho 759 814 29 8 44

Ho 807 815 8 37 8 45
PO 8 18 8 48
Pu 821 851
ZK 8 28 8 58
Za 831 8 42 8 47 8 53 901 912 923

Za 8 32 8 43 8 48 8 53 9 02 913 923
AS 838 842 8 49 8 54 8 59 9 04 9 08 9. 12 919 929 9 34

AS 8 38 8 42 8 49 8 54 8 59 9 04 9 08 9 12 919 929 9 34
AC 8 43 A 8 48 8 54 9 00 9 05 9 10 9 13 9 18 9 24 9 35 9 40

AS 844 H 851 9 14
Sc 858 to 903 9 27

AC 8 49 9 02 9 05 9 19 9 24 9 32
AA 8 57 9 10 9 14 X 9 27 9 33 9 40
UC 9 17 9 30 9 40 X 9 47 10 00

i ii
niet zaterdags, niet op zon- en feestdagen en
niet op 24, 27, 28 en 31 dec, 29 mrt, 29 apr en
10 mei

Fig. 14.10.

164

> zie vervolg >

°

a

° o .

Fig. 14.11. The search space for Gvc - Br

165

o e

20 a > vervolg >

treinnummer 5016 4818
178

a 1831
6031

4033 5408 5418
731

6933

833 6435 5233 9633 7333

Zandvoort aan Zee 8 58
Overveen 9 05
Haarlem A 9 09

Haarlem 0 8 50 8 57 9 06 0 9 07 9 12
Amsterdam Sloterdijk 0 9 00 9 08 O 915 0 9 16 9 23
Amsterdam CS A 0 9 05 9 14 9 21 0 9 22 9 29

Schiphol 8 53 9 05
Amsterdam CS A 9 10 9 27

Amsterdam CS 9 79 9 24 9 32 ,t 9 35
Amsterdam Muiderpoort 9 29 9 40
Amsterdam Amstel 9 27 9 33 9 40 9 44
Amsterdam Bijlmer 9 37 9 48
Abcoude 9 41 9 52
Breukelen A 9 50 9 59

Breukelen 9 59
Maarssen 10 03
Utrecht CS A 947 10 00 10

Utrecht CS 9 52 10 04 "10 07
Utrecht Lunetten 9 56
Houten 10 01 10 13
Culemborg 10 09 10 21
Geldermalsen A 10 15 10 28

Geldermalsen 10 31
Zaltbommel 10 37
's-Hertogenbosch A 10 33 10 48

's-Hertogenbosch 10 35 10 50
Vught 10 55
Boxtel 10 58 11 02
Best 11 05 11 09
Eindhoven Beukenlaan 11 12 11 16
Eindhoven A 10 57 11 16 11 20

Eindhoven 10 59 11 02
Geldrop 11 07
Heeze 11 12
Weert A 11 	16 11 25

Weert 11 17
Roermond A 11 31

Roermond 11 24 11 32
Echt 11 32
Susteren 11 36
Sittard A 11 43 11 48

Sittard 11 51
Geleen Oost 11 55
Spaubeek 11 59
Schinnen 12 02

Nuth 12 05
Hoensbroek 12 08
Heerlen A 12 13

Sittard 11 49
Geleen-Lutterade
Beek-Elsloo
Bunde
Maastricht A 12 04

Boottrein Amsterdam X;
niet op 26 en 27 dec

Fig. 14.13.

167

9 39 912
9 17
921
9 24
9 27
9 34

9 52
9 58

10 04

10 03 	10 06
10 12
10 17
10 23
10 31

10 24 	10 36

1025 	10 37
I 	10 43

10 47

1037 10 52

10 45 	10 51
10 54

9 47

10 14 	10 17

10 20 	10 23

101 32
10 38

10 42

10 43

10 55

11 06
11 14

11 14
77 22

> zie vervolg

9 37
9 46

9 46

9 58

11 05

9 08
9 12
9 18
9 20
931

2833
A) 4637

19833 9933 9833
6136

30
A, 533 4 533

X
it 2309 	5933

6239

919

9 27

9 40

9 41

10 01

9 35
9 39

cc— 3 9831
4635

ai) 2031
19831

9931 4026 et 1731
1831

A) 1731

5931

HC
Vo
Zm
ZO

8 38
8 42
8 48
8 50

9 03
9 07

Go 901 9 23

RC 842 fZ 851 8 54 9 09
RN 8 47 8 59
RA 8 51 8 59 9 03 9 17
CS 8 54 9 06
NIJ 8 57 910
Go 904 910 9 17

Go 907 911 9 18 9 23
Wo 916 9 29

Wo 9 22
VI

9116
9 28

UC 928 931 9 34 944 947 47
,_I

UC H 9 30 9 36 9 50 R 953
Bu 9 42 I I
DZ 9 47 ,10 02
Ma 9 53

9158

Ve 10 01
EW 10 06 10 14
EW 10 07 10 15
Wo 10 13
Oo 10 17
Ar 1110 02 10 22 }1026

Ar 21 10 34
El 10 42
El 10 42
Nij 35 10 50

Fig. 14.12.

166

1933 5435 5033 5133
5233
6237

5135
9633

5433
15231

EC- 82 A, 2135
_yr

A 1933 A, 158

9631

4634
A, 833

6933

10 17

10 30

10 20
10 27
10 35
10 38

9 12
9 17

9 04

9 03
9 08
9 13

9 26

9 12

9 29

9 31

9 46

8
1
 57

9 20
9 23
9 26
9 29
9 33
9 39
9 42

I 8 59
9 03
9 08
9 11
918
9 23

9 33

9 50

911
9 14
9 15
9 19
9 24
9 27
9 34
9 39

9
1
 27

9 33
1

941
9 46

9 56
9 59

10 02
10 05
10 09
10 15
10 18

10 19

10 28
10 28
10 35
10 40

9 42

9 58

10 03

10 21

9 40
9 43
9 44
9 48
9 52
9 55

10 02
10 07

4..
"k

4022 31027

10 47

11 00

11 01

10 50
10 57
11 05
11 08
11 09
11 24

A

A

A

Rotterdam CS
Rotterdam Noord
Rotterdam Alexander
Capelle Schollevaar
Nieuwerkerk aid Ussel
Gouda

Gouda
Woerden
Woerden
Vleuten
Utrecht CS

Utrecht CS
Bunnik
Driebergen-Zeist
Maarn
Veenendaal-de Klomp
Ede-Wageningen

10 58
11 05
11 12
11 16

Bo
Be
EB
Ei

10 32
10 39
10 46
10 50 11 24 10 54

511 02
(11 09
(11 16
511 20

Valkenburg Expres; 	 Rembrandt A111
zaterdags van 30 jun-1 sep Izie bladzij 206)

El

Sr

Si
He

10 59
11 48
11 51
12 13

11 29
12 18
12 19
12 36
12 21 11 49
12 41

10 59
12 04

11 29 510 34
10 42 11 38 11 08

Fig. 14.14.

168

Fig. 14.15.

169

11 08
11 12
11 18
11 30
11 38
11 42

10 43
10 47

510 53

50 a
A) 2511 A 4636

A 935
6835

9 45
9 49
9

1
 50

9 57

10 10

10 12

10 26

10 27

10 46
10 25
10 43

30 a > vervolg >
treinnummer

Den Haag CS
Voorburg
Zoetermeer
Zoetermeer Oost
Gouda

Ede-Wageningen
Wolfheze
Oosterbeek
Arnhem 	 A

Arnhem
Elst 	 A
Elst
Nijmegen 	 A

1727
1827
_r

1727
_r

5927

9829
6132

2829
k 4633

19829 9929 529

k 2929
6235

529
_r

5929

803 8 08 819 8 35
807 8 12 1 8 39

I
18 827
20 1

823 8 31 840
8 09 12 8 37

1 17
B 17 21 8 45

24
27
34

8 23 37 8 41
46
46 8 52

8158
8 58

844 847 901 9 04 9 14 9 17

8 50 8 53 9 03 9 06 9 20 9 23
9 12

8 58 902 9 17 9 32

1
9 23 9 38
931

914 924 9 36 9 42
9 25 9 37 9 43 9115

9 43
I 9 47

9 26 9 37 9 52 9 55
r______J

9 34 9 45 951 70 06
9 41 9 54 70 14
9 41

1
10 14

9 49 10 05 10 22

7 55

> zie vervolg

Sr
Ma
Ei
He
He
HB
De
HS
BI
Ve

9 33

941

9 50

951
9 55

10 08
10 16 	

9 55
10J13

10 39
10 54

10 31

55
00
04
07
10
17

18
29

8 40

5

11 39

12 02

HC
HS
HS
Rij
De
DZ
SR
RC

RC
RB
RZ
RL
Ba
Zw
Do

Do
DZ
LZ
LZ
BP
Br
Ro
Br

Br
GR
TW
Ti
Tr
s-H
Ti
Ois
Bo

8 59
9 02

10 38
10 42

10 43
10 49
10 58

511 47
511 50

51a
4 4621

1919
4 821

4 4621 4619
6219
6819

4421
6221
6921

6120 16915 6217 1915 6118
1917

4 919

km treinnummer 6215
6917 817 6815

5. 6 45 601 6 25 t 6 38
C 6 45
C 6 45
-I- 6 53

5. 651
6 58
6 58
7 06

6 03 0 Arnhem
Elst 6 32 5. 6 54 A 6 08 6 12 11

6 08 6 32 Elst
Nijmegen

11
6 40 A 6 17 19 A A

5. 6 54
6 57
7 06
7 17

Nijmegen
Nijmegen Heyendaal
Cuijk
Boxmeer

5 53
5 56
6 05
6 15

A 621
6 24
6 33
6 47

19
19
33
43

A

A

SZ

1̀.

621
6 32
6 47
6 50

6 53
7 02
7 17
7 20

7 23
7 32
7 47
7 50

Vierlingsbeek
Venray
Blerick
Venlo

50
57
78
80

a
le141 654
A 658

A 8 03 • 7 29
8 07 ,Z 7 33

7 55
801
8 09
8 16
8 21

I 6 25
631
6 39
6 46
651
6 54

A 7 13

6 55
701
7 09
7 16
7 21

7 25
7 31
7 39
7 46
7 51

Venlo
Tegelen
Reuver
Swalmen
Roermond
Roermond
Sittard

80
85
92
98

103 A
8 32 7 24 5. 7 32 	7 54 	8 02

743 	748 5. 813 	818

El 715 	751 	749 	821 (819
El 737 	813 	I 	I 	5. 836

8 04 	841

8 24
8 43 8 48

8 49
1

851 Sittard
Heerlen 	 A
Maastricht 	 A

5. 721
• I
• 7 41

9 13
9 04

51 a > vervolg >
km treinniimmer *,(1831

6237
6937

k 4635
* 1933

935

k 4637 k 4631 k 1827 	6132 	4633 	6235
1929 	6233 4 833 	 6835

6933

6136 k 2027
k 931

C) 9 17

QO 9 31

* 837

5 921 	934 	945 	951
9 41
941 	

954

5. 9 35 	9 49 	 10 05

10 34 10 45 10 51 10 06 10 21 Arnhem
Elst 	 A
Elst
Nijmegen 	 A
Nijmegen
Nijmegen Heyendaal
Cuijk
Boxmeer

0
11 10 42 10 54 10 14

70 42 10 14 11
19 35 70 50 10 22 11 05

,10 54
10 57
11 06
11 17

10 24
10 27
10 36
10 47

9 54
9 57

10 06
10 17

(10 23
11032

10 47
11050

19
19
33
43

10 53
11 02
11 17
11 20

11 23
11 32
11 47
11 50

Vierlingsbeek
Venray
Blerick
Venlo

50
57
78
80

11 38 10 38
11 42 A 10 42

(10 55
11 01

(11 09
11 16

5.11 21

11 25
11 31
11 39
11 46
11 51

11 55
12 01
12 09
12 16
12 21

Venlo
Tegelen
Reuver
Swalmen
Roermond 	 A

80
85
92
98

103
5.11 54 12 02 12 24 12 32 Roermond

Sittard 	 A
11 02 11 24 11 32

12 13 12 18 12 43 12 48 11 18 11 43 11 48
12 49 12 21 12 19 12 51 Sittard

Heerlen 	 A
Maastricht 	 A

11 19 17 51 11 49
1

13 04 121 41
12 36 13 13 11 36 12 13

12 04

111:1 niet zaterdags, niet op zon- en feestdagen
en niet op 11 en 12 feb

Fig. 14.16. 	 Fig. 14.17. The search space for Vs - ZI

170 171

treinnummer -tE- 	944
k 1848

7747

4446 k 1945 k 2140
X

-* 4646
9646

19849
751

4 	846
6246
7749

4448 5245 --t, 1547 14648
Ai.. 4648

9648

12 20
12 23
12 27
12 30
12 40

Vlissingen
Vlissingen Souburg
Middelburg
Arnemuiden
Goes

11 56

11 5094
I

12 16

I
12 24

12 44
12 50 Kapelle-Biezelinge

Kruiningen-Yerseke
12 55
72 59
1308

Krabbendijke
Rilland-Bath
Bergen op Zoom 	A 12

1
39

Bergen op Zoom
Roosendaal 	 A

12 40
12 50

73 09
13 19

Roosendaal
Etten-Leur
Breda 	 A

12 55
13 05
13 13

13 20
13 27
13 35
13 38

r___

13 25
13 35
13433

13 38
13 42

13 47

14 00

13 50
13 57
14 05
14 08

Breda
Gilze-Rijen
Tilburg West
Tilburg 	 A

13117
I

13 30
14 09
14 24 Tilburg

's-Hertogenbosch 	A
13 39
13 54

13 38
13 59

513 43
SC 14 12 Eindhoven 	 I 	13 08

s-Hertogenbosch 	A I 	13 29
13 73
13 42

14 07
14 11
14 15
14 22
14 27

'114

14

14

14

15

25

38

54

57

10

's-Hertogenbosch
's-Hertogenbosch Oost
Rosmalen
Oss West
Oss

13 37
13 41
13 45
13 52
13 57

13

14

14

55

08

24

14 34
14 40
14 45
14 50

Ravenstein
Wijchen
Nijmegen Dukenburg
Nijmegen 	 A

14 04
14 10
14 15
14 20

14 43
14 50

Nijmegen
Elst 	 A

14 13
14 20

14

1

27

14 40
14 50
14 59

Elst
Arnhem 	 A

14 20
14 29

Arnhem
Arnhem Velperpoort
Arnhem Presikhaaf
Velp
Rheden

14 37
14 39

14 42

14 54

15 04

14 59
15 01
15 05
15 08
15 12

X1508
15 10

15 12

15 17
15 21
15 28

15 24

15 34

Dieren
Brummen
Zutphen 	 A

Zutphen
Deventer 	 A

15 05
15 17

15 36
15 48

15 50

16 10

Deventer
Olst
Wijhe
Zwolle 	 A

15 19
15 27

15 43
15 33

Zwolle
Leeuwarden 	 A

15 52
16 57

Zwolle
Groningen 	 A

15 49
16 54

10 b > vervolg >
treinnummer -k 2140 .4 	549 5540 6340 1653 5340 5440 E 	1942

4840
k 	55421 	5142
k 	955

Vlissingen
Vlissingen Souburg
Middelburg
Arnemuiden

511 56

11 2N
1

Goes 12 16
Kapelle-Biezelinge

12124 Kruiningen-Yerseke
Krabbendijke
Rilland-Bath
Bergen op Zoom 	A 12 39
Bergen op Zoom 12 40
Roosendaal 	 A 50

Roosendaal 12 53
Oudenbosch
Zevenbergen

Breda 12 57 13 18
Breda-Prinsenbeek 13 01 13 23

Lage Zwaluwe 13 08
Dordrecht Zuid 13136
Dordrecht 	 A 13 16 13 19 13 40

Dordrecht 13 17 13 20 13 41
Zwijndrecht 13 23
Barendrecht 13 28
Rotterdam Lombardijen 13 31 13 50
Rotterdam Zuid 13 35
Rotterdam Blaak 13 39
Rotterdam CS 	 A 13 32 13 43 13 L_59

Rotterdam CS 13 39
Utrecht CS 	 A 14 17
Amersfoort 	 A 14 37

Rotterdam CS 13 34 13 46 13 54
Schiedam-Rotterdam West 13 51 13 59
Delft Zuid 14 05
Delft 13 58 14 08
Rijswijk 14 12
Den Haag HS 	 A 13 51 14 05 14 17

Den Haag HS 13 53 14 06 14 18
Den Haag CS 	 A 14 21
Den Haag CS 13 58 14 14

Den Haag Laan van NOI 14 01
Den Haag Mariahoeve 14 04 14 19
Voorschoten 14 09
De Vink 14 25
Leiden 	 A 14 03 1414 14 16 14130

Leiden 14 04 14 06 14 19 14 17
Nieuw Vennep 14 29
Hoofddorp 14 28 14 34
Schiphol 14 19 14 33 14 39

Schiphol 14 21 14 25 14 35 14 40
Amsterdam Zuid WTC 14 32 14 47
Amsterdam RAI 	A 14 35 14 50
Heemstede-Aerdenhout 14 20 14 29
Haarlem 	 A 14 25 14 35
Haarlem 14 25 14 37 14 42

Amsterdam Lelylaan 14 28 14 43
Amsterdam De Vlugtlaan 14 47
Amsterdam Sloterdijk 14 35 14 50 14 47 14 53
Amsterdam CS 	 A 14 38 14 41 14 57 14 53 14 59

niet op 23, 25, 26 en 30 dec, 31 mrt, 28 apr
en 19 mei

Fig. 14.18.
Fig. 14.19.

1

172
	 173

> zie vervolg >

15 28
15 44

15 45
15 57
16 06
16 17
16 30
16 36

15 49
16 04

16 04
16 16
16 25
16 35
16 47
16 54

15 52
16 08
16 09
16 17
16 25
16 35
16 42
16 47
16 57

4046 (4) 1751 4, 1751
k 751

X ot) 751

14 03
14 07

14 23

13 54
	

14 09
13 59
14 03
	

14 17
14 06
14 10
14 17
14 18
	

14 23
14 29

14 44
	

14 47

14 52 	14 52

15 07 	151 07

15 10 	15 10

15 46 	15 46

80 a
5651
	

9853 	9953
3653

14 08
14 12
14 18
14 20
14 31
14 12
14 17
14 21
14 24
14 27
14 34
14 37
14 46
14 46

14 58

14 52
14 58
15 04

14 56
14 59
15 04
15 07
15 07

15 14

'121510
(15 13
(15 18

15 21

15 16
15 19
15 25
15 30
15 35
15 39
15 46
15 53
15 59
16 08

5649 9851

13 38
13 42
13 48
13 50
14 01
13 42
13 47
13 51
13 54
13 57
14 04
14 07
14 16
14 16

14 28

8149

14 22
74 28
14 34

9951
3651

14 26
14 29
14 34
14 38
14 38
14 42
14 47

14 49
14 52
14 58
15 03
15 08
15 12
15 19
15 25
15 31
15 40

14 40
14 43
14 48
14 51

549
X

549 9949
3649

13 35
13 39

13 39

13 47

14 17 	14114

14 22 14 22

13 52
13 58
14 04

14 10
(14 13
(14 18

21

14 37 14 37

HC
Vo
Zm
ZO
Go
RC
RN
RA
CS
NIJ
Go
Go
Wo
Wo
VI
UC

UC
U
Bil
Do
Do
So
Am

Am
AS
Nij
Pu
Er
Ha
Nu
't H
We
Zw

E114 39

15 14

1E114 39

15 14

Zw
Me
Me
St
Wo
He
Ak
Gr
Le
Me
Ho
Be
As
Ha
Gr

15 16

15 57

16 14

15 19

15142

15 56

16 13

15. TRAINS, A Product

In this chapter we look at the aspects concerning the practical use of the
TRAINS system. There are two types of such use: first, the system is used as a tool at
professional enquiry offices, and second, the system is used by customers (travellers)
themselves. The system is commercially marketed for use by passengers in addition
to the traditional (paper) time-tables.

15.1. Travel information and TRAINS

In this context, by travel information we mean the information about the
product "travel by train", and the related aspects which a traveller needs to plan a trip
by train (possibly including the return trip). Travel information is to be seen as an
integral part of the product "travel by train"; it is one of the first steps in the travelling
process. In the definition of travel information, as given by the NS marketing
department, the following stages are distinguished (we describe the present
situation):

(1) Information at home: information about the planned train services and about
fares.

(2) Information on the way to the railway station: traffic signs indicating the way to
the railway station.

(3) Information at the station of departure: information about the planned train
services, changes, delays and arrival and departure tracks.

(4) Information on the train: information about the destination and possibly the
route of the train.

(5) Information at the station of arrival: street maps and information about
connecting public transportation.

The TRAINS system gives information about the planned train services, and can
be used in stages (1), (3) and (4). In stage (1), passengers traditionally use paper
time-tables or call a telephone enquiry office. In stage (3), passengers consult
information boards or go to an enquiry office at the station. In stage (4), passengers

Fig. 14.20.

174
	 175

consult the signs on the train or ask the conductor. The TRAINS system was first
used at telephone enquiry offices, later also at enquiry offices at railway stations.
Then the system was introduced for home and office use by passengers. In the future,
the TRAINS system may also be consulted through Videotex terminals at home, the
system may be used in information pillars at stations, and conductors may carry a
hand terminal with the system.

The need for travel information is common to all passengers. However, this
need is greatest for passengers which travel relatively little (1 to 10 trips per year)
and with varying destinations. The NS travel information policy (derived from the
strategic and marketing policy, in which travel information plays an important role)
is based on the needs of these passengers. If the needs of these passengers are met,
then certainly, this will also be the case with the other types of passengers. The
TRAINS system is especially suited for passengers who travel to many different
destinations. For stage (1) the NS travel information policy has the following

objectives:

(1) Travel information should be as much as possible available 24 hours per day.

(2) Travel information should be as much as possible individually oriented.

(3) Travel information should be supplied at a low cost to the customer.

The TRAINS system contributes significantly to the realization of these objectives.
When used at an enquiry office or at home, the system will provide answers tailored
to the specific wishes of a passenger. And of course, when used at home it is available
24 hours per day. Furthermore the retail price of the TRAINS system (f 9,95 , about

US $ 5.00) is very low. Because of the added functionality, the ease of use, and
because the TRAINS system is used by personnel (at enquiry offices and throughout
the NS organization) as well as by the passengers themselves, it has replaced the
traditional paper time-tables as the center of the travel information policy, as
defined by the NS marketing department.

15.2. TRAINS as a tool at enquiry offices

By the end of 1987, travel information by telephone was provided by 12 enquiry
offices at railway stations, by 255 stations without separate enquiry offices, and by 2
telephone enquiry offices (in The Hague and Hengelo). However, the total capacity
had become much too low, and especially the telephone enquiry offices were very
busy and difficult to get in touch with. Furthermore, at the railway stations without
enquiry offices, information was given by unqualified personnel (not trained to give
travel information). Due to these facts, the overall quality of travel information was
poor and many customers were dissatisfied. In order to improve the quality it was

decided to centralize travel information by telephone into three telephone enquiry
offices (in Utrecht, The Hague and Hengelo) which give solely travel information
(both planned train services and information on presently running trains). All
personnel is trained specifically for giving travel information. In order to improve
the quality of information, in the spring of 1988 TRAINS was introduced as a tool at
these enquiry offices. The three offices have one single national telephone number
(06 - 899 1121) and have 39 telephone lines. In total, 180 people work at the enquiry
offices (mostly part-time), currently (September 1990) handling about 2.5 million
calls per year. A call is not toll free; the customer pays f 0,40 per minute.

15.2.1. Introducing TRAINS at enquiry offices

The users of TRAINS at enquiry offices had no previous computer experience
whatsoever. Therefore much effort was put into a careful introduction of the system.
A project team was formed for the introduction. Members of this team were the two
developers of the system (working for CVI, Centrum Voor Informatieverwerking, a
subsidiary company of NS), a team manager from the NS exploitation department
responsible for travel information, a representative from the NS exploitation
department responsible for the information systems containing the time-tables, a
representative from the NS marketing department responsible for travel
information, a professional NS instructor, and the heads of the three enquiry offices.

The program was made as much user-friendly as possible. For instance, since
most new users could hardly type, a powerful name recognition algorithm was
designed to handle misspellings of station names. Since both experienced personnel
from previous enquiry offices and new personnel would be working with the system,
it had to be made sure that the user interface accommodated both types of users. For
instance, a station can be entered by its official abbreviated name, but also by its full
name (possibly incomplete or misspelled). The interface was designed in such a way
that users can quickly perform the most frequent queries:

(1) What is the best way to travel from one station to another, departing at or after,
or arriving at or before some specific time?

(2) What is the appropriate fare?
(3) What are the possibilities for the return trip?
(4) What is an earlier or later train?
(5) What is the earliest or latest possibility?

TRAINS' active component (discussed in chapter 13) makes sure that alternate trip
possibilities are found, thereby providing the caller with all relevant information.

176 	 177

Of course, introducing a computer at a site where previously all work was done
manually, creates some fear. First, people may fear that their job may become
redundant. Second, people may fear that they will not be able to master this new
technology and will lose their job. When we started the introduction of TRAINS, we
emphasized that the system was a new, easy to use tool to make jobs more pleasant.
The users would not have to tediously search the paper time-tables anymore (which
were notoriously worn out after a few weeks of service), and have more time to help
the client on the telephone, while reducing the time the client would have to wait.
We were careful not to say that the system would be better than they were, just faster.

When the introduction was started, the system was not transferred to the
enquiry offices. Instead, we left the system in a room at the company headquarters in
Utrecht. We asked the heads of the three enquiry offices to come to Utrecht about 4
hours per week to help us develop the system further. With the help of a professional
instructor (who was experienced in teaching personnel at enquiry offices and at
ticket counters) they learned to operate the system. Although these people would
never operate the system in practice, this approach had a number of advantages:

(1) The fact that the heads of the enquiry offices were the first to work with the
system (at the company headquarters!) confirmed their status at the enquiry
office. The introduction of the system further confirmed their status.

(2) At the company headquarters, away from their personnel, the heads of the
enquiry offices were much less inhibited than they would have been at their
enquiry offices. They were allowed to make mistakes without becoming
embarrassed and without their personnel knowing it. By the time the system was
transferred to the enquiry offices, the heads were experienced with the new
system, and could reassure and help their personnel themselves. Since the heads
of the enquiry offices were experienced with the system before their personnel
was, again their status was confirmed instead of endangered by this new
technology. They were actively involved in the introduction.

(3) After initial training, the subsequent, additional on the job training of personnel,
could be left to the heads of the enquiry offices.

(4) The heads of the enquiry offices were all very experienced and had spent several
years giving travel information themselves. Their comments greatly helped to
improve the system and especially the user interface (the design and lay-out of
the screens, the use of keys, and the refinement of the user model).

During these sessions, there was much direct contact between the developers of the
system and the heads of the enquiry offices. Even the smallest comments were
discussed with the project team, and the effects would almost always be visible at the

178

next session. Quickly seeing the effects of their comments, the heads of the enquiry
offices gained much confidence in the system and its developers. The system was
made for them and with them. Towards the end of their introduction to TRAINS,
they regarded the system as their system as well. The disadvantage of this approach
was that the user management was only distantly in touch with the development.
They did hear about the system, the comments and alterations, but always much
later. Still, we feel that if the communication had been through the conventional
management channels, too many comments would have been at least much delayed,
possibly coloured or even filtered out! We feel that the active involvement of the
heads of the enquiry offices and the direct contact between the users at the enquiry
offices and the developers of the system have been critical success factors during the
introduction.

It must be emphasized that much of the system has been adapted during the
introduction and the first year of professional use. Although the underlying (search)
algorithms have remained largely the same, practically every other aspect of the
system has been revised in a prototyping manner: the users were given a prototype
system they could try out, the prototype was adapted to remarks and wishes, then the
users tried out the new prototype, and so on. Especially since the users of TRAINS
had very little or no experience with information systems, they could not be expected
to articulate their requirements completely and clearly. The prototyping method
proved to be an excellent way to determine these requirements. For a discussion of
the prototyping method see [Je, 1983] and [Da, 1984].

15.2.2. The effects of professional use of TRAINS

After the system was introduced at the enquiry offices and the users there
acquired experience with the system, a number of effects became clear. We shall
look at a number of them.

15.2.2.1. Speed

The system performs much faster than human beings. Queries are answered in
15 to 30 seconds (when the system runs on Atari ST computers). It is estimated that
by using the system, questions about trip possibilities and fares are handled in 50 to
70 percent of the time taken before the introduction of TRAINS. Note that the
duration of the complete call is measured. With the TRAINS system, most of the call

179

consists of dialogue, the silence while the operator is searching has almost
	

form of inconsistency. By now, the detours generated by TRAINS are automatically
completely disappeared. Furthermore, it seems that with the TRAINS system, the

	
accepted as reasonable. We can say that TRAINS embodies this regulation!

operators tend to give more information'. 	
15.2.2.5. Awareness

15.2.2.2. Quality

In non trivial cases, the system often gives better answers than human beings.
The system is unprejudiced and will find the optimal route, no matter how hard it
would be to find the route in the paper time-tables, or how unusual the route may
seem. We found that people tend to prefer certain routes for specific queries. It
turned out that many people working at enquiry offices used 'old' knowledge. The
routes they preferred used to be optimal some time ago. However, they did not
update their knowledge very well, every time the time-tables were changed. As a
result, they would give suboptimal solutions.

15.2.2.3. Consistency

Since the TRAINS system is used throughout the organization and at all enquiry
offices, customers will get the same advice everywhere. Previously however, the
advice would have depended on the knowledge of the person asked. For instance,
the people working at the enquiry office in The Hague have a good knowledge of the
possibilities locally, but less so of the possibilities around, say, Hengelo. The people
working at the enquiry office in Hengelo would advise to travel from Hengelo to
Maastricht via Utrecht (a considerably longer than usual, but equally fast route
which is more comfortable, see chapter 13). The people at the enquiry office in The
Hague, however, would not have considered that route.

15.2.2.4. Regulations

It became clear that some NS regulations needed to be more precise. For
instance, one regulation states that a detour is allowed if it makes a journey quicker
or more comfortable. The rule does not give a limit to the detour. Previously, many
detours giving better journeys were too hard to find in the time-tables and not many
people knew about them (and obviously did not use them). But the TRAINS system
will always find a quicker journey, no matter how unusual the route may be or how
difficult it may be to find it in the time-tables. It was then decided to let the
personnel decide whether the detour was reasonable or not, which introduced a new

1 Mrs. J. Weggemans, head of the enquiry office in Utrecht at the time of the introduction (personal communication).

Apart from the data of the planned train services, the TRAINS system needs
detailed information about which possible connections are feasible and which are
not. Since the system requires information about all possible connections, not just
the most important connections (as indicated in the paper time-tables), this placed a
higher demand on the information from the time-table planning department. With
the TRAINS system they can actually see how their planning works out in practice;
TRAINS enables them to tune the time-tables for better connections more easily. In
general, the use of the system throughout the NS organization has led to a higher
awareness of the quality of the time-tables, which is a major part of the quality of the
entire product "travel by train".

15.3. TRAINS as a commercial product

In the summer of 1989, after the TRAINS system had been used successfully at
enquiry offices for one year, it was decided that the system could be released to the
general public in May 1990.

15.3.1. Releasing TRAINS

Releasing a product like TRAINS does have some risks:

(1) If the system would malfunction or would not satisfy the customers, then that
would damage the image of NS and give the organization a bad reputation not
easily forgotten.

(2) The system could be misused, for instance by the press to generate negative
publicity for NS.

Therefore, in order to try out the reaction from the public and the press, it was
decided to have a prerelease during the fall of 1989. Before that, the system was first
tested at some external sites, for example at the ANWB (the largest Dutch
automobile club) and the Ministry of Transport. When the reactions turned out to be
positive, in October 1989, the system (now called "NS Reisplanner"; the NS Travel
Planner) was prereleased in limited numbers as a promotional gift of CVI (Centrum
Voor Informatieverwerking, the software company of NS), where the system had
been developed and which was celebrating its 25th anniversary. In this way, an
unsuccessful prerelease would have had only a minor effect on the image of NS. Of

180 	 181

course, it would have been damaging for the image of CVI, but people would have
been more forgiving since the system was a promotional gift. Furthermore, the
image of a mid-size software company such as CVI is less sensitive than the image of
a national railway company such as NS.

Fortunately, the prerelease was successful and due to the limited edition, within
a few weeks the system turned into what was called the most frequently copied
program of the country. During this period of unofficial use, many people
encouraged NS to release TRAINS as an official product and useful suggestions
were made on how the system could be improved.

We shall now look at the aspects concerning the release of the TRAINS system

as an official NS product.

15.3.1.1. The product

The primary objective of the product is to distribute the planned NS train
services. A secondary objective has been to enhance the NS image as a modern
company. The product is aimed at the following categories of users:

(1) Individual travellers.
(2) Companies, business travellers.
(3) Public information suppliers such as libraries and tourist information offices.

Since the same system would be used by customers as well as professional users (NS
employees), it had to be easy to use for both types of users. In case of a compromise,
it was decided that the emphasis should always be on the customer. Therefore, for
instance no jargon was allowed in the program. Since the user interface was designed
already to accommodate unexperienced NS users, only minor changes were
necessary. The use of (the official) abbreviated station names was made optional (by
default not available). Since the train numbers are only useful for (NS) internal
reference, they too were made optional (by default not shown). Furthermore,
additional information about the tariff distances of the routes the system finds (and
which are used to calculate fares) were made optional (not shown by default). By
making optional these features, which are primarily aimed at professional use, and
by supplying a user profile facility, both types of users are accommodated. The
functionality of the system was not changed; all information available to professional
users are available to the customers. The system was made available for MS DOS

and Atari ST computers.

153.1.2. Price

It was decided to give the system a retail price which was as low as possible
(without making a loss) for two reasons. First, the NS travel information policy is to
supply information at a low cost to the customer. Second, selling information is not
viewed as an NS activity. Giving travel information is seen as a service aspect and as
an integral part of the NS product "travel by train". Because the system offers more
service than the conventional time-tables (retail price f 6,50), it should be priced
accordingly. Since the system was originally written for professional use, the
development costs were not taken into account, and only the costs of production,
distribution and promotion (the "out of pocket" costs) needed to be covered. This
way, a retail price off 9,95 was calculated.

153.13. Packaging

An attractive cassette was designed to contain a floppy disk (both the 3.5 and
5.25 inch formats can fit in the cassette), a manual and a railway map. The lay-out
and colours (of the cassette, the manual and even the floppy disks themselves) were
chosen to fit the NS corporate style. The objective was to make the package
immediately recognizable as an NS product. A link to the paper time-tables was
made by using the cover art of the (paper) time-tables for the cassette of the floppy
disk.

153.1.4. Promotion and distribution

The distribution of the product was kept limited for three reasons:

(1) NS had no previous experience with selling software.
(2) The potential of the product was unclear since commercial software of such a low

cost was unprecedented.
(3) Since three versions of the system were available (on 3.5 inch and 5.25 inch

floppy disks for MS DOS computers, and on 3.5 inch floppy disks for Atari ST
computers) an extensive distribution would be complicated and costly.

It was decided to mainly distribute the system by mail order and to sell it in special
NS shops ("Spoorwinkel") at the railway stations of Amsterdam CS, Utrecht CS and
The Hague CS, and at a mobile promotion stand. Distribution by a third party was
not chosen since that would have given too little control over the distribution and
would have added too much to the price.

182
	

183

Due to a limited budget the promotion was kept modest. It was made part of the
"monthly marketing theme". The marketing theme of May 1990 was the new train
services and the release of the system was part of that. In a brochure about the new
train services, the system as well as the new time-tables were announced and an
order form for the system was enclosed. These brochures were available at all ticket
counters. Furthermore, the system was mentioned in the new time-tables and in a
brochure for regular customers (again including an order form). There was no
separate promotion campaign. Review copies of the system were sent to computer
magazines. In November 1990, the TRAINS system was featured in an NS
"corporate brochure", which described 8 important NS projects for the nineties, and
which was aimed at enhancing the NS image as a modern company. This brochure
was backed by a poster campaign at railway stations.

153.1.5. Personnel

The general NS personnel was made aware of the new product by a small
announcement in an article about the new train services in the newsletter sent to all
NS personnel. An extra announcement was made in the special news bulletin for
retail personnel, explaining the distribution matters and the specific (customer)
brochure with order form.

15.3.2. Sales and effects

The system went on sale as an official NS product on May 5, 1990. Although the
system seems to be copied extensively (again!), the sales have been higher than
expected: 35 000 copies over the first 6 months! The main reasons are probably the
low price and the attractive packaging. At the end of 1990, we estimate that there are
about 100 000 copies of the system in use. Apparently the system performs very
satisfactorily. We have received many compliments and only very few complaints
were made, and almost all of them about faulty disks. The only criticism has been
about the limited distribution. The most frequent suggestions have been about
adding platform information and a digital map.

The first effect of the sale of the system that could be seen, has been a decrease
in calls to telephone enquiry offices. In an early internal NS study (August 1990) it
has been calculated that statistically, each floppy disk sold gives a mean decrease of
6 telephone calls per year. There has been no clear effect on the sale of paper
time-tables. Many customers bought both the program and the paper time-tables.

An important result of the high sales figures is that unscheduled updates of the
system, to deal with changes in the time-tables in the course of the year, would be

costly and complicated. Normally, the system is valid one year, and each year a new
release with the new time-tables is sold again. An update for systems sold the
previous year is not offered. Due to the low cost of the software, this is considered
acceptable by the customers. Multiple releases per year would probably not be
considered acceptable, however. If the time-tables would be changed considerably
in the meantime, an update of all systems sold would be costly. If an unscheduled
important change of time-tables is considered, this will have to be taken into
account.

15.3.3. Alternate use

Apart from being used to plan a trip by train, TRAINS is also used for other
purposes. In Amsterdam, the system is being used in a labour council project to
introduce long term unemployed people to computers and to take away fear of
computers (apparently, the user interface design meets the objectives that were set).
At the university of Leiden, the system is used in a first session of an introductory
course "Law and Informatics" for law students. In 1991, the system will also be used
in information science lessons at secondary schools throughout the country. Many
companies use the fares information of the system to check trip expense accounts.
Personnel departments use the system to advise employees and applicants on how to
travel to the company site.

15.4. The future

In the future, the system will remain in use at enquiry offices and each year a
new version with the new train services will be released to the public. Over the next
years, new features will be added to increase the service and to keep the interest of
the public (for instance digital maps and platform information). Apart from versions
giving information about NS (national) train services, there may also be versions
giving information about (some) international train services.

NS is currently developing new retail systems which will be used at ticket
counters (making the different types of tickets and handling the cash register
functions). The TRAINS system will also be included in these new systems in order
to provide customer information. The system may also be used in information pillars
and ticket machines. The system is currently used in an experimental Videotex
application. We will be investigating the possible use of TRAINS in the planning
process of new train services.

Transport by train, however, is only part of the total public transportation system
and it has become clear that a system giving information about all forms of public

184 	 185

transportation is a necessity. Such a system is now under development (see chapter

16).

Finally, we are currently also developing versions of TRAINS for foreign
railway companies and versions including airline information. A prototype version
of TRAINS including both railway and airline services was recently shown to airline

companies.

16. Further Developments

In this chapter we shall first look at some recent further developments of the
TRAINS system, and then discuss some future work. This chapter is largely similar
to [Tu, 1990].

We recently adapted the TRAINS system to include not only train services, but
also other forms of public transportation. Our first step was to introduce regional
buses. The next step was to include intra-city transportation, such as buses, trams and
subways. Currently, we are building a system which will include the entire Dutch
public transportation system. This information system will be fully operational in
1992.

16.1. Representing other forms of public transportation

In order to ensure high quality information, we had to extend our representation
of transportation services. The concept of time-tables is common to all forms of
public transportation. The frequency and the punctuality differ, however. The
frequency does not affect the quality of time-table information, but the punctuality
does. If the punctuality is low, time-table information is not of much use. Trains,
subways and regional buses are both fairly punctual. Intra-city transportation like
tramways and buses, has a relatively low punctuality because one heavily used
infrastructure is shared with other city traffic. In practice, the time-tables are used as
a reference only. In order to give useful information, we dropped the discrete
departure times and travel times for these types of transportation, and replaced
them by an estimated waiting time (at the stop) and an estimated travel time. These
times are chosen conservatively and may depend on the time of day (the delays may
be greater during rush hours). In this way, the system will give a realistic advice.

16.2. Discontinuities in public transportation services

As described in chapter 13, the active component of the TRAINS system
searches for discontinuities (resulting in alternate journeys) by trying different times
of departure and arrival. However, not only changes in the desired time of departure

186
	

187

or arrival may cause discontinuities: the choice of station may also have effects. For
instance, at the (railway) station Amsterdam Lelylaan all (fast) intercity train
services stop, while at the station Amsterdam De Vlugtlaan (about 2 km from
Lelylaan) only the (slow) stopping trains stop. It may be more efficient to take more
time to go to the Lelylaan station instead of the station De Vlugtlaan, and then take
advantage of the intercity services.

Usually, situations in which the choice of station is relevant are rare in a national
railway network. But when we consider intra-city transportation services, these
situations are very common. Many bus and tram stops are within walking distance
from each other (providing connections), or multiple stops are at a more or less
equal distance from a destination. Favouring a certain stop over another one may
have different reasons:

(1) A stop may be serviced by faster links.
(2) A stop may be more frequently serviced.
(3) A stop may be serviced by a link which provides quicker connections.
(4) A stop may be serviced by a link providing a more direct connection.

In the first three cases the travel time of a complete journey (which may consist of
multiple stages and different modes of transport) will decrease. The last case may
provide a more convenient journey.

16.2.1. The human solution: maps

Humans deal with stops which are near to each other by using maps. They look
for stops in the neighbourhood of a certain stop and assess the advantages of the
different possibilities. If the destination of a trip does not have a stop in the
immediate proximity, then this situation is handled similarly: on the map the
different stops in the neighbourhood are assessed. Humans, however, seldomly have
complete and unbiased knowledge of the different possibilities and therefore the
solution which is found is often suboptimal. This is particularly the case if local
knowledge is lacking or limited. For instance, for a trip to Amsterdam, many people
choose Amsterdam Central Station because they think that the biggest station will
provide the best connections. However, Amsterdam has 7 more stations, some of
which might be much better suited considering the time-tables or the geographical
location of the exact goal of the trip (within Amsterdam).

16.2.2. The computer solution: digital maps

In order to extend the active behaviour of our system we use the same approach
as the human solution in combination with complete knowledge. We use digitized

188

map information. Of each stop in the network the exact geographical position is
known.

16.2.2.1. Estimating walking distances

By using the coordinates of the stops and simple two-dimensional geometry, the
distance between two stops can be estimated. For the computation of this estimate
we use the Manhattan distance: all stops are assumed to lie on a grid of straight roads
with 90° angled corners, much like a street map of Manhattan Island (New York
City). By using an estimate of the walking speed (in km/h), we can estimate the time
to walk the distance.

16.2.2.2. Choosing the stops

When the user of the system enters the name of a stop (either the place of
departure or arrival), the system will search in the neighbourhood of this stop for
possible alternate stops. All stops within a walking distance of 10 minutes are
considered. This selection is suggested to the user who may remove stops from this
selection or add extra stops. Then all stops in the selection are considered in the
search for possible journeys. Each stop is given a penalty equal to the walking
distance. If there are 6 possible departure stops and 5 possible arrival stops, then all
30 possible journeys are evaluated. The best solutions in terms of travel time and
number of changes (train changes, bus changes etc), taking into account the walking
distances, are selected and suggested to the user.

16.2.2.3. Special objects

Sometimes, a user has very limited local knowledge. She only knows the address
of where she would like to go, or not even that: she would like to go to a specific
museum of which she does not know the exact address. For these cases we have
introduced special objects. A special object can be a district name, a street name, a
postal code, the name of a shopping center, a museum, a hospital, etc. The exact
geographical position is known for each special object. When a special object, such
as a postal code, does not have a single position, then the geographical position of its
center is used. Long streets may be subdivided into different parts (which are
distinguished by house numbers). By using the same approach as for determining
alternate stops, stops in the neighbourhood of a special object are determined.

189

16.2.2.4. Obstacles

Although two stops may be very close geographically, it may not be possible to
walk from one stop to the other. For example, they may be separated by a canal or a
river. For these situation we have introduced obstacles. The position and the length
are known for each obstacle. By using two-dimensional geometry it can be computed
how much time it would take to walk past the obstacle.

16.2.2.5. The advantage of using geographical information

The paramount advantage of using the coordinates of the geographical location
of a stop or an object, is that this approach combines a high degree of flexibility and
maintainability. Stops or objects can be added or removed very easily, no extra
information about other stops or special objects nearby is needed. For input, no
relation between stops and objects near the new stop need to be given. The system
will objectively decide which stops are near, without bias and with complete
information.

16.3. Combining time-tables and geographical information

By using complete information of both time-tables and geographical locations
of stops, the system is capable of giving high quality information: the best
possibilities considering time and space are found. Alternatives are not only found
by trying different times, but also by trying different stops which are near the origin
or destination. With complete knowledge and without bias the best suited journey is
found.

16.4. Using TRAINS in the time-table planning process

In the future we shall be investigating the possible use of the TRAINS system in
the time-table planning process. An important step in the time-table planning
process is the evaluation of a proposed time-table. By supplying a test set of trips
(origin and destination pairs), the TRAINS system can be used on the new
time-table to compute the resulting travel times. By weighing the different origin
and destination pairs, and by comparing the resulting travel times to the optimal
travel times (which are direct connections without stops), an indication of the quality
of the time-table can be obtained. Furthermore, by using information about the
numbers of travellers, an indication of the load of the different lines can be obtained.

References

[Be, 1958] Bellman, R.E., "On a routing problem", Quarterly of Applied Mathematics,
16, 1958, pp. 87 - 90.

[Bu, 1968] Butas, L., "A directionally oriented shortest path algorithm",
Transportation Research, 2, 1968, pp. 253 - 268.

[CI, 1972] Clercq, F. Le, "A public transportation assignment method", Traffic
Engineering and Control, June 1972.

[Co, 1966] Cooke, K.L. and Halsey E., "The Shortest Route Through a Network with
Time-Dependent Internodal Transit Times", Journal of Mathematical Analysis and
Applications, 14, 1966, pp. 493 - 498.

[Da, 1960] Dantzig, G.B., "On the Shortest Route through a Network", Management
Science, 6, 1960, pp. 187 - 190.

[Da, 1966] Dantzig, G.B., "All Shortest Routes in a Graph", Technical Report 66-3,
Operations Research House, Stanford University.

[Da, 1977] Dawson, C., Siklossy, L., 'The role of preprocessing in problem solving
systems", Proceedings of the fifth International Joint Conference on Artificial
Intelligence, Cambridge, Ma, 1977, pp. 465 - 471.

[Da, 1984] Davis, G.B., and Olson, M.H., "Management Information Systems",
Second edition, Singapore: McGraw-Hill, 1984, pp. 567 - 670.

[De, 1979] Denardo, E.V. and Fox, B.L., "Shortest-route Methods: 1. Reaching,
Pruning, and Buckets", Operations Research, 27, 1979, pp. 161 - 186.

[De, 1984], Deo N. and Pang C., "Shortest-path algorithms: taxonomy and
annotation", Networks, 14, 1984, pp. 297 - 323.

[Di, 1969] Dial, R.B., "Algorithm 360: Shortest Path Forest with Topological
Ordering", Communications of the ACM, 12, 1969, pp. 632 - 633.

190 	 191

[Di, 1979] Dial R.B. et al, "A computational analysis of alternative algorithms and

labelling techniques for finding shortest path trees", Networks, 9, 1979, pp. 215 - 248.

[Di, 1959] Dijkstra, E.VV., "A Note on Two Problems in Connection with Graphs",

Numerische Math., 1, 1959, pp. 269 - 271.

[Dr, 1969] Dreyfus, S.E., "An Appraisal of Some Shortest-Path Algorithms",

Operations Research, 17, 1969, pp. 395 - 412.

[Ev, 1979] Even, S., "Graph Algorithms", Potomac, Md: Computer Science Press,

1979.

[Fa, 1967] Farbey, B., Land A. and Murchland J., 'The cascade algortihm for finding

all shortest distances in a directed graph", Management Science, 14, 1967, pp. 19 - 28.

[Fl, 1962] Floyd, R.W., "Algorithm 97, shortest path", Communications of the

Association of Computing Machinery, 5, 1962, pp. 345.

[Fo, 1956] Ford, L.R., "Network Flow Theory", The Rand Corporation, 1956.

[Ga, 1984] Gallo, G. and Pallottino S., "Shortest path methods in transport

networks", in Transportation Planning Models, Amsterdam, Elsevier Science

Publishers, 1984, pp. 227 - 256.

[Gi, 1973] Gilsinn J., and Witzgall C., "A Performance Comparison of Labeling
Algorithms for Calculating Shortest Path Trees", National Bureau of Standards
Technical Note 777, 1973.

[Gl,1984] Glover, E et al., "New polynomially bounded shortest path algorithms and
their computational attributes", University of Texas, Austin, Center for Business

Decision Analysis, 1984.

[Go, 1976] Golden, B., "Shortest-Path Algorithms: A Comparison", Operations

Research, 24, 1976, pp. 1164 - 1168.

[Ha, 1968] Hart, P., Nilsson, N.J. and Raphael, B., "A formal basis for the heuristic

determination of minimum cost paths", IEEE Trans. Systems Man Cybernet, 4, 1968,

pp. 100 - 107.

[Ha, 1974] Harris, L.R., 'The heuristic search under conditions of error", Artificial

Intelligence, 5, 1974, pp. 217 - 234.

[Hi, 1986] Hillier, ES., and Lieberman, G.J., "Introduction to Operations Research",

Fourth edition, Oakland, Ca: Holden-Day Inc, 1986, pp. 337 and 501 - 502.

192

[Hu, 1967] Hu, T.C., "Revised Matrix Algorithms for Shortest Paths", SIAM Journal
on Applied Mathematics, 15, 1967, pp. 207 - 218.

[Hu, 1968] Hu, T.C., "A Decomposition Algorithm for Shortest Paths in a Network",
Operations Research, 16, 1968, pp. 91 - 102.

[Je, 1983] Jenkins, A. Milton, "Prototyping: A Methodology for the Design and
Development of Application Systems", Working Paper, School of Business, Indiana
University, Bloomington, 1983.

[Ka, 1982] Katoh, N., Ibaraki T. and Mine H., "An efficient algorithm for k shortest
simple paths", Networks, 12, 1982, pp. 411 - 427.

[Ki, 1969] Kirby R.F. and Potts, R.B., 'The minimum route problem for networks
with turn penalties and prohibitions", Transportation Research, 3, 1969, pp. 397 - 408.

[Kl, 1964] Klee, V., "A string algorithm for shortest paths in a directed network",
Operations Research, 12, 1964, pp. 428.

[Lu, 1989], Luby, M. and Ragde, P., "A Bidirectional Shortest-Path Algorithm with
Good Average-Case Behaviour", Algorithmica, 4, 1989, pp. 551 - 567.

[Me, 1984], Mero, L., "A heuristic search algorithm with modifiable estimate",
Artificial Intelligence, 23, 1984, pp. 13 - 27.

[Mi, 1957], Minty, G., "A comment on the shortest route problem", Operations
Research, 5, 1957, pp. 724.

[Mo, 1957] Moore, E., 'The Shortest Path through a Maze", Proceedings of the
International Symposium on the Theory of Switching, Cambridge, Ma, 1957.

[Mu, 1967] Murchland, J.D., "The 'once through' method of finding all shortest
distances in a graph from a single origin", Transport Network Theory Unit Report
LBS-TNT 56, London Graduate School of Business Studies, London, 1967.

[Ni, 1969] Nicholson, T.A.J., "Finding the shortest route beteen two points in a
network", Computer Journal, 9, 1969, pp. 275.

[Ni, 1971] Nilsson, N.J., "Problem-Solving Methods in Artificial Intelligence", New
York: McGraw-Hill, 1971.

[Ni, 1980] Nilsson, N.J., "Principles of Artificial Intelligence", Palo Alto, Ca: Tioga,
1980.

[Pa, 1974] Pape, U., "Implementation and Efficiency of Moore Algorithms for the
Shortest Route Problem", Mathematical Programming, 7, 1974, pp. 212 - 222.

193

[Pa, 1984] Pallottino, S., "Shortest path methods: complexity, interrelations and new
propositions", Networks, 14, 1984, pp. 257 - 268.

[Pe, 1979] Pearl, J., "Studies in heuristics. Part 1: Three variations on a theme in A*",
UCLA-ENG-CSL-7934, University of California, Los Angeles, Ca, 1979.

[Pe, 1986] Perko, A., "Implementation of algorithms for k shortest loopless paths",
Networks,16, 1986, pp. 149 - 160.

[Po, 1970] Pohl, I., "Heuristic search viewed as path finding in graphs", Artificial

Intelligence, 1, 1970, pp. 193 - 204.

[Po, 1971] Pohl, I., "Bidirectional Search", Machine Intelligence, 6, 1971, pp. 127 -
140.

[Po, 1960] Pollack, M. and Wiebenson, W, "Solution of the shortest route problem:
a review", Operations Research, 8, 1960, pp. 224 - 230.

[Sa, 1974] Sacerdoti, E.D., "Planning in a hierarchy of abstraction spaces", Artificial

Intelligence, 4, pp. 145 - 180.

[Sh, 1976] Shier, D.R., "Iterative methods for determining the k shortest paths in a
network", Networks, 6, 1976, pp. 205 - 229.

[Sh, 1979] Shier, D.R., "On algorithms finding the k shortest paths in a network",
Networks, 9, 1979, pp. 195 - 214.

[Si, 1978] Sildossy, L., "Impertinent Question-Answering Systems: Justification and
Theory", Proceedings of the ACM Annual Conference, 1978, pp. 39 - 44.

[Si, 1991] Sildossy, L., and Tulp, E., 'The Space Reduction Method", Information

Processing Letters, 38, 1991, pp. 187 - 192.

[St, 1974] Steenbrink, PA., "Optimization of transport networks", New York: Wiley,
1974, pp 150 - 171.

[Tu, 1988] Tulp, E. and Siklossy, L., "TRAINS, An Active Time-table Searcher",
Proceedings of the 8th European Conference on Artificial Intelligence, Munich 1988,
Pitman Publishing, London, pp. 170 - 175.

[Tu, 1989] Tulp, E. and Sildossy, L., "TRAINS, A Case Study of Active Behaviour",
Proceedings of the International Workshop on Industrial Applications of Machine
Intelligence and Vision, Tokyo 1989, pp. 259 - 263.

[Tu, 1990] '111lp, E., Verhoef M.L. and Tulp VV.L., "TRAINS, Further Implementation
of Active Behaviour", Proceedings of COGNITIVA 90, Madrid 1990, pp. 711 - 714.

194

[Vu, 1988] Vuren, T. van and Jansen, G.R.M., "Recent developments in path finding
algorithms: a review", Transportation Planning and Technology, 12, 1988, pp. 57 - 71.

[VI, 1978], Vliet, D. van, "Improved Shortest Path Algorithms for Transport
Networks", Transportation Research, 12, 1978, pp. 7 - 20.

[Wa, 1985], Wahister, W.„ "Cooperative Access Systems", Future Generation
Computer Systems, 1, 2, pp. 103 - 111.

[Wa, 1987], Warburton, A., "Approximation of pareto optima in multiple-objective
shortest path problems", Operations Research, 35, 1987, pp. 70 - 79.

[Wh, 1960] Whiting, P.D. and Hillier, J.A., "A method for finding the shortest route
through a road network", Operational Research Quarterly, 11, 1960, pp. 37 - 40.

[Wh, 1982] White, D.J., 'The set of efficient solutions for multiple objective shortest
path problems", Computer Operations Research, 9, 1982, pp. 101 - 107.

[Wi, 1984] Winston, P. H., "Artificial Intelligence", Reading, Ma: Addison Wesley,
1984.

[Ye, 1968] Yen, J.Y., "Matrix Algorithm for Solving All Shortest Routes from a Fixed
Origin in the General Networks", Proceedings of the Second International Conference
on Computing Methods in Optimization Problems, San Remo 1968.

[Ye, 1970] Yen, J.Y., "An algorithm for finding shortest routes from all source nodes
to a given destination in general networks", Quarterly of Applied Mathematics, 27,
1970, pp. 526 - 530.

[Ye, 1971] Yen, J.Y., "Finding the k-shortest, loopless paths in a network",
Management Science, 17, 1971, pp. 712 - 716.

195

Summary

Searching time-table networks

In this thesis we describe an application of AI search techniques to an important
class of problems that arise in transportation system analysis. Specifically, this thesis
deals with path search problems in space-time networks, a problem commonly
arising in connection with scheduled service modes. An important example of a
scheduled service mode is a railway transportation service. Apart from a search
procedure, we also present a novel representation of the problem domain, and a
practical application of the techniques described.

Rather than to adapt a conventional graph representation in order to represent
a time-table network, we introduce discrete and discrete dynamic networks for this
purpose. In a discrete network there are only finite, discrete, predetermined
possibilities for moving from one vertex to another. If we consider a railway service
network as an example of a time-table network, in a discrete network the stations are
represented by vertices, and each train is represented by one connection between
vertices. Instead of representing the discrete nature of the scheduled connections
(the departure times of the trains) by a function giving the (varying) travel time and
wait time of a connection, the connections themselves are made discrete. Each
connection representing a train has a discrete start value and end value, representing
the time of departure and time of arrival respectively. In a discrete dynamic network,
in addition, visiting a vertex has a cost (possibly zero), which may depend on both the
past and the future route of the path through the vertex. The visiting cost represents
the required connectional margin which depends on both the arriving train and the
departing train. Furthermore we introduce dynamic networks, which lack the
discreteness of connections, but in which visiting a vertex has a cost.

In discrete and discrete dynamic networks, due to the discrete nature of the
connections, the definition of an optimal path must be adapted: not only has the
optimal path the smallest end value (earliest possible arrival time), but also the
greatest possible start value, given this end value (the latest possible departure,

197

given the time of arrival). In order to find such an optimal path, with Dijkstra's
algorithm in mind, we have developed a two-pass algorithm for searching a discrete
network. Due to the varying visiting costs in a discrete dynamic network and a
dynamic network, the Markov independence of optimal solutions is no longer true.
This means that an optimal solution for the total problem cannot be constructed by
combining optimal solutions of the subproblems. "Divide and Conquer" fails. In a
railway service network, the optimal route from A to C via B may not be a

combination of the optimal route from A to B and the optimal route from B to C,
since there may be no connection. Therefore none of the traditional shortest path
algorithms could be used. We have adapted the two-pass algorithm for searching a
discrete network to handle discrete dynamic and dynamic networks: we define which
solutions to the subproblems are required to be able to construct an optimal solution
for the total problem.

In order to increase search efficiency we have developed the Space Reduction
Method. In SRM first solutions in a simpler search space, called the abstraction
space, are considered in order to cut parts of the entire search space. In a railway
service network, the abstraction space consists of a network in which all trains
between two stations are replaced by one connection with an estimated travel time.
By searching this abstract network it is determined which part of the time-table
network is likely to contain the optimal solution. SRM reduces the search space
without losing optimal solutions. Once a solution has been found SRM checks
whether a better solution might exist outside the reduced search space. We show
how SRM can be applied to searching a discrete dynamic network.

Heuristics can be used to further improve the efficiency of search algorithms.
We describe how the results from SRM can be used in an A* type of extension to the
algorithm for searching discrete dynamic networks, by preferring vertices which are
estimated to be closest to the goal during search. SRM gives for every vertex
(station) a consistent underestimate of the distance (travel time) remaining to the
goal vertex (station of arrival). In the search process, this estimate is used to select
the vertices which are estimated to be closest to the goal.

An excellent way to decrease the amount of search necessary to find a solution,
is to make sure that the network that is being searched is as small as possible. Some
vertices can be removed from the network when they are neither the source, nor the
goal vertex. In a railway service network, if it is useless to change trains at a station
and if this station is neither the station of departure nor the station of arrival, then
we do not need to consider this station when searching. We show how the algorithm
for searching discrete dynamic networks can be adapted to deal with these 'hidden'
vertices.

When a system is being used to advise travellers about their trip by train, giving
only the quickest route is not sufficient. In any practical application travellers also
want to know about routes with as few train changes as possible. We describe how
the quickest route can be optimized for train changes, and how some longer
(suboptimal) routes with fewer train changes can be found by using a time penalty
for train changes. By penalizing routes with train changes during search, routes
without, or with fewer train changes can be found.

Although the optimal or quickest solution is thoroughly defined, it is far less
clear what is the best answer to a user's question. In practice, it turns out that users
usually overspecify their question and that this question is seldomly definite. There
are many factors which determine the 'best' answer, and most users cannot even
make all of these factors explicit. Of a trip by train it is known that the number of
train changes is important, but there may be additional factors contributing to the
best answer. Furthermore, these factors may differ from case to case. Therefore, it is
not possible to define the best answer in terms of goals and constraints. For example,
in order to find the best answer we cannot just have chosen to use such techniques as
multiple-objective shortest path techniques, or techniques to find suboptimal paths
for each objective. Instead, we search for a number of optimal solutions, and
suboptimal solutions with fewer train changes, and use a general "common sense"
user model to select all relevant solutions for a user. The user decides which solution
is best for her.

The algorithm for searching discrete dynamic networks and the techniques
described previously have been implemented in a working system (TRAINS) which
searches the entire Dutch railway service network. We describe how TRAINS was
introduced as a tool at information centers of the Dutch railway company NS
(Nederlandse Spoorwegen). Subsequently, TRAINS was adapted for public use and
released, first as a promotional gift, then as an official NS product (NS Reisplanner).

198 	 199

Samenvatting

Het doorzoeken van dienstregelingsnetwerken

In dit proefschrift behandelen we een toepassing van AI-zoektechnieken op een
belangrijke klasse van problemen bij de analyse van transportsystemen. In het
bijzonder behandelt dit proefschrift kortste-pad problemen in tijd-ruimte
netwerken. Dit soort problemen doet zich in het algemeen voor bij transport op
basis van een dienstregeling. Een belangrijk voorbeeld daarvan is een
treindienstregeling. Behalve een zoekprocedure, introduceren we ook een nieuwe
representatie van het probleemgebied, en een praktische toepassing van de
beschreven technieken.

In plaats van een conventionele graafrepresentatie aan te passen om een
dienstregelingsnetwerk te representeren, introduceren we discrete en discrete
dynamische netwerken. In een discreet netwerk is er een eindig aantal discrete,
vastgestelde mogelijkheden om van een punt naar een ander te gaan. In plaats van
de discrete aard van de dienstregelingsverbindingen te representeren door een
functie die de (variërende) reistijd en wachttijd van de verbinding geeft, maken we
de verbindingen zelf discreet. Elke verbinding heeft een discrete begin- en
eindwaarde, die respectievelijk de vertrek- en aankomsttijd representeren. In een
discreet dynamisch netwerk zijn er bovendien kosten verbonden aan het bezoeken
van een punt (mogelijk 0 kosten), die kunnen afhangen van zowel de reeds gevolgde
als de toekomstige route van het pad via dit punt. Deze bezoekkosten representeren
de benodigde overstaptijd. Verder introduceren we dynamische netwerken, waarin de
verbindingen niet discreet zijn, maar waarin het bezoeken van een punt kosten geeft.

In discrete en discrete dynamische netwerken moeten we door de discrete aard
van de verbindingen de definitie van een optimaal pad aanpassen: een optimaal pad
heeft niet alleen een zo laag mogelijke eindwaarde (lees: een zo vroeg mogelijke
aankomst), maar ook een zo groot mogelijke beginwaarde, gegeven deze
eindwaarde (lees: een zo laat mogelijk vertrek, gegeven de aankomsttijd). Om een
dergelijk optimaal pad te vinden hebben we, met Dijkstra's algorithme in gedachten,

200 	 201

een uit twee slagen bestaand algorithme ontwikkeld om discrete netwerken te
doorzoeken. Vanwege de variërende bezoekkosten in een discreet dynamisch en een
dynamisch netwerk is de Markov onafhankelijkheid van de optimale oplossing niet
langer van kracht. Dit betekent dat een optimale oplossing van het totale probleem
niet geconstrueerd kan worden uit een samenstelling van de optimale oplossingen
van de deelproblemen. "Verdeel en heers" gaat niet op. Met andere woorden: in een
treindienstregeling hoeft de optimale route van A naar C via B geen samenstelling
te zijn van de optimale route van A naar B en de optimale route van B naar C, omdat
er mogelijk geen aansluiting bestaat. Hierdoor kan geen van de traditionele
kortste-pad algorithmen gebruikt worden. We hebben het algorithme voor het
doorzoeken van discrete netwerken aangepast voor discrete dynamische en
dynamische netwerken: we definiëren welke oplossingen van de deelproblemen
vereist zijn om de optimale oplossing van het totale probleem te kunnen

samenstellen.

Om de zoekefficiëntie te verhogen hebben we de Space Reduction Method
(Ruimte Reductie Methode) ontwikkeld. In SRM worden eerst oplossingen
beschouwd in een eenvoudigere zoekruimte, de abstractieruimte geheten, om delen
uit de volledige zoekruimte te kunnen snijden. In een treindienstregeling bestaat de
abstractieruimte uit een netwerk waarin alle treinen tussen twee stations zijn

vervangen door een verbinding met een geschatte reistijd. Door dit abstracte
netwerk te doorzoeken wordt bepaald welk deel van het dienstregelingsnetwerk
waarschijnlijk de optimale oplossing bevat. SRM reduceert de zoekruimte zonder de
optimale oplossing te verliezen. Zodra een oplossing is gevonden, controleert SRM
namelijk of er misschien een betere oplossing buiten de zoekruimte zou kunnen
bestaan. We laten zien hoe SRM toegepast kan worden op het doorzoeken van een
discreet dynamisch netwerk.

Heuristieken kunnen worden gebruikt om de efficiëntie van zoekalgorithmen
verder te verbeteren. We beschrijven hoe de resultaten van SRM gebruikt kunnen
worden in een A* achtige uitbreiding van het algorithme om discrete dynamische
netwerken te doorzoeken, door tijdens het zoeken de voorkeur te geven aan die
punten die vermoedelijk dichter bij het doel liggen. SRM geeft voor ieder punt
(station) in de zoekruimte een consistente onderschatting van de afstand (reistijd)
die nog resteert naar het doel (aankomststation). Tijdens het zoekproces wordt deze
schatting gebruikt om die punten te selecteren die vermoedelijk het dichtst bij het

doel liggen.

Een uitstekende manier om het zoeken naar een optimale oplossing te
beperken is er voor te zorgen dat het te doorzoeken netwerk zo klein mogelijk is.
Sommige punten kunnen uit het netwerk verwijderd worden als ze noch vertrekpunt

202

noch doel zijn. Bij een treindienstregeling geldt: als het geen zin heeft om over te
stappen op een station, en als het bovendien niet om eenvertrek- of aankomststation
gaat, dan kunnen we dit station bij het zoeken buiten beschouwing laten. We laten
zien hoe het algorithme voor het doorzoeken van discrete dynamische netwerken
kan worden aangepast om met deze 'verborgen' punten om te gaan.

Indien een systeem wordt gebruikt om reizigers te adviseren over hun treinreis,
dan is het niet voldoende alleen de snelste routes te geven. In de praktijk willen
reizigers ook informatie over routes met zo min mogelijk overstappen. We
beschrijven hoe de snelste route geoptimaliseerd kan worden naar het aantal
overstappen, en hoe sommige (suboptimale) routes met minder overstappen
kunnen worden gevonden door een tijdsboete voor overstappen te gebruiken. Door
routes met overstappen tijdens het zoeken te beboeten, kunnen routes zonder of
met minder overstappen worden gevonden.

Ofschoon de optimale of de snelste oplossing goed is gedefinieerd, is het veel
minder duidelijk wat het beste antwoord op een vraag van een bepaalde gebruiker is.
In de praktijk blijkt dat veel gebruikers hun vraag normaliter overspecificeren en dat
deze vraag zelden volkomen vast ligt. Er zijn veel factoren die het 'beste' antwoord
bepalen, en de meeste gebruikers kunnen deze factoren niet eens alle expliciet
maken. Van treinreizen is het bekend dat het aantal keren overstappen belangrijk is,
maar er kunnen meer factoren bijdragen tot het beste antwoord. Verder kunnen
deze factoren van geval tot geval verschillen. Daarom is het niet mogelijk om het
beste antwoord te definiëren in termen van doelen en eisen. Voor ons onbruikbaar
zijn daardoor technieken die met meerdere doelen naar het kortste pad zoeken of
die voor elk doel een suboptimaal pad vinden. In plaats daarvan zoeken we naar een
aantal optimale oplossingen en suboptimale oplossingen met minder overstappen,
en gebruiken een algemeen "gezond verstand" gebruikersmodel om al die
oplossingen te selecteren die relevant zijn voor een gebruiker. De gebruiker zelf
beslist welke oplossing het beste is.

Het algorithme voor het doorzoeken van discrete dynamische netwerken en de
zojuist beschreven technieken zijn geimplementeerd in een werkend systeem
(TRAINS), dat de volledige Nederlandse treindienstregeling doorzoekt. We
beschrijven hoe TRAINS werd geintroduceerd als een hulpmiddel op telefonische
informatiecentra van de Nederlandse Spoorwegen (NS). Daarna werd TRAINS
aangepast voor algemeen gebruik en uitgebracht, eerst als relatiegeschenk, daarna
als een officieel NS produkt (NS Reisplanner).

203

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111

